Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Biomacromolecules ; 15(4): 1484-90, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24694012

RESUMEN

Collagen is a major component of the extracellular matrix and plays a wide variety of important roles in blood clotting, healing, and tissue remodeling. Natural, animal derived, collagen is used in many clinical applications but concerns exist with respect to its role in inflammation, batch-to-batch variability, and possible disease transfection. Therefore, development of synthetic nanomaterials that can mimic the nanostructure and properties of natural collagen has been a heavily pursued goal in biomaterials. Previously, we reported on the design and multihierarchial self-assembly of a 36 amino acid collagen mimetic peptide (KOD) that forms nanofibrous triple helices that entangle to form a hydrogel. In this report, we utilize this nanofiber forming collagen mimetic peptide as a synthetic biomimetic matrix useful in thrombosis. We demonstrate that nanofibrous KOD synthetic collagen matrices adhere platelets, activate them (indicated by soluble P-selectin secretion), and clot plasma and blood similar to animal derived collagen and control surfaces. In addition to the thrombotic potential, THP-1 monocytes incubated with our KOD collagen mimetic showed minimal proinflammatory cytokine (TNF-α or IL-1ß) production. Together, the data presented demonstrates the potential of a novel synthetic collagen mimetic as a hemostat.


Asunto(s)
Colágeno/química , Hemostáticos/química , Hemostáticos/farmacología , Nanofibras/química , Biomimética , Hemostasis , Humanos , Interleucina-1beta/metabolismo , Imitación Molecular , Monocitos/efectos de los fármacos , Activación Plaquetaria , Adhesividad Plaquetaria , Andamios del Tejido , Factor de Necrosis Tumoral alfa/metabolismo
2.
J Chem Phys ; 129(9): 095103, 2008 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-19044891

RESUMEN

Helical oligomers of beta-peptides represent a particularly promising type of building block for directed assembly of organic nanostructures because the helical secondary structure can be designed to be very stable and because control of the beta-amino acid sequence can lead to precise patterning of chemical functional groups over the helix surfaces. In this paper, we report the use of small angle x-ray scattering measurements (SAXS) to characterize nanostructures formed by the directed assembly of beta-peptide A with sequence H(2)N-beta(3)hTyr-beta(3)hLys-beta(3)hPhe-ACHC-beta(3)hPhe-ACHC-beta(3)hPhe-beta(3)hLys-ACHC-ACHC-beta(3)hPhe-beta(3)hLys-CONH(2). Whereas prior cryo-TEM studies have revealed the presence of nanofibers in aqueous solutions of beta-peptide A, SAXS measurements from the nanofibers were not well-fit by a form factor model describing solid nanofibers. An improved fit to the scattering data at high q was obtained by using a form factor model describing a cylinder with a hollow center and radial polydispersity. When combined with a structure factor calculated from the polymer reference interaction site model (PRISM) theory, the scattered intensity of x-rays measured over the entire q range was well described by the model. Analysis of our SAXS data suggests a model in which individual beta-peptides assemble to form long cylindrical nanofibers with a hollow core radius of 15 A (polydispersity of 21%) and a shell thickness of 20 A. This model is supported by negative stain transmission electron microscopy.


Asunto(s)
Nanoestructuras/química , Oligopéptidos/química , Oligopéptidos/síntesis química , Secuencia de Aminoácidos , Microscopía Electrónica de Transmisión , Conformación Molecular , Tamaño de la Partícula , Dispersión del Ángulo Pequeño , Difracción de Rayos X
4.
Acta Biomater ; 1(4): 387-97, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16701820

RESUMEN

We have developed a class of peptide amphiphile (PA) molecules that self-assemble into three-dimensional nanofiber networks under physiological conditions in the presence of polyvalent metal ions. The assembly can be triggered by adding PA solutions to cell culture media or other synthetic physiological fluids containing polyvalent metal ions. When the fluids contain suspended cells, PA self-assembly entraps cells in the nanofibrillar matrix, and the cells survive in culture for at least three weeks. We also show that entrapment does not arrest cell proliferation and motility. Biochemical and ultrastructural analysis by electron microscopy indicate that entrapped cells internalize the nanofibers and possibly utilize PA molecules in their metabolic pathways. These results demonstrate that PA nanofibrillar matrices have the potential to be used for cell transplantation or other tissue engineering applications.


Asunto(s)
Materiales Biocompatibles/química , Adhesión Celular/fisiología , Supervivencia Celular/fisiología , Cristalización/métodos , Nanotubos/química , Oligopéptidos/química , Ingeniería de Tejidos/métodos , Animales , Técnicas de Cultivo de Célula/métodos , Matriz Extracelular/química , Interacciones Hidrofóbicas e Hidrofílicas , Ensayo de Materiales , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Células 3T3 NIH , Nanotubos/ultraestructura , Unión Proteica , Conformación Proteica , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA