RESUMEN
Social recognition is essential for the formation of social structures. Many times, recognition comes with lesser exploration of familiar animals. This lesser exploration has led to the assumption that recognition may be a habituation memory. The underlying memory mechanisms and the thereby acquired cortical representations of familiar mice have remained largely unknown, however. Here, we introduce an approach directly examining the recognition process from volatile body odors among male mice. We show that volatile body odors emitted by mice are sufficient to identify individuals and that more salience is assigned to familiar mice. Familiarity is encoded by reinforced population responses in two olfactory cortex hubs and communicated to other brain regions. The underlying oxytocin-induced plasticity promotes the separation of the cortical representations of familiar from other mice. In summary, neuronal encoding of familiar animals is distinct and utilizes the cortical representational space more broadly, promoting storage of complex social relationships.
Asunto(s)
Cognición , Odorantes , Oxitocina , Reconocimiento en Psicología , Animales , Oxitocina/farmacología , Oxitocina/metabolismo , Masculino , Ratones , Reconocimiento en Psicología/fisiología , Reconocimiento en Psicología/efectos de los fármacos , Cognición/efectos de los fármacos , Cognición/fisiología , Ratones Endogámicos C57BL , Corteza Olfatoria/fisiología , Conducta Social , Plasticidad Neuronal/efectos de los fármacos , Olfato/fisiología , Olfato/efectos de los fármacos , Memoria/efectos de los fármacos , Memoria/fisiología , Conducta Animal/efectos de los fármacosRESUMEN
African science has substantial potential, yet it grapples with significant challenges. Here we describe the establishment of the Biomedical Science Research and Training Centre (BioRTC) in Yobe State, Northeast Nigeria, as a case study of a hub fostering on-continent research and describe strategies to overcome current barriers. We detail the steps taken to establish BioRTC, emphasising the critical importance of stakeholder engagement, community involvement, resource optimisation and collaborations. With its state-of-the-art facilities and commitment to training African scientists, BioRTC is poised to significantly advance neuroscience research and training in the region. Although we are in the early stages of our journey, our model, emphasizing open access and inclusivity, offers a replicable blueprint for neuroscience research development in similar resource-limited settings, promising to enrich the global neuroscience community. We invite the support and collaboration of those who share our vision and believe in our potential.
Asunto(s)
Investigación Biomédica , Neurociencias , Nigeria , Neurociencias/educaciónRESUMEN
As science and technology evolve, there is an increasing need for promotion of international scientific exchange. Collaborations, while offering substantial opportunities for scientists and benefit to society, also present challenges for those working with animal models, such as non-human primates (NHPs). Diversity in regulation of animal research is sometimes mistaken for the absence of common international welfare standards. Here, the ethical and regulatory protocols for 13 countries that have guidelines in place for biomedical research involving NHPs were assessed with a focus on neuroscience. Review of the variability and similarity in trans-national NHP welfare regulations extended to countries in Asia, Europe and North America. A tabulated resource was established to advance solution-oriented discussions and scientific collaborations across borders. Our aim is to better inform the public and other stakeholders. Through cooperative efforts to identify and analyze information with reference to evidence-based discussion, the proposed key ingredients may help to shape and support a more informed, open framework. This framework and resource can be expanded further for biomedical research in other countries.
RESUMEN
Our goal in this manuscript is to advance the assessment and treatment of monkey species in neuroscience research. We hope to begin a discussion and establish baseline data on how complications are identified and treated. We surveyed the neuroscience research community working with monkeys and compiled responses to questions about investigator demographics, assessment of animal wellbeing, treatment choices, and approaches to mitigate risks associated with CNS procedures and promote monkey health and wellbeing. The majority of the respondents had worked with nonhuman primates (NHP) for over 15 y. Identification of procedure-related complications and efficacy of treatment generally rely on common behavioral indices. Treatments for localized inflammatory responses are generally successful, whereas the treatment success for meningitis or meningoencephalitis, abscesses, and hemorrhagic stroke are less successful. Behavioral signs of pain are treated successfully with NSAIDs and opioids. Our future plans are to collate treatment protocols and develop best practices that can be shared across the neuroscience community to improve treatment success rates and animal welfare and therefore science. Human protocols can be used to develop best practices, assess outcomes, and promote further refinements in treatment practices for monkeys to enhance research outcomes.
Asunto(s)
Bienestar del Animal , Humanos , Animales , HaplorrinosRESUMEN
Ethical frameworks are the foundation for any research with humans or nonhuman animals. Human research is guided by overarching international ethical principles, such as those defined in the Helsinki Declaration by the World Medical Association. However, for nonhuman animal research, because there are several sets of ethical principles and national frameworks, it is commonly thought that there is substantial variability in animal research approaches internationally and a lack of an animal research 'Helsinki Declaration', or the basis for one. We first overview several prominent sets of ethical principles, including the 3Rs, 3Ss, 3Vs, 4Fs and 6Ps. Then using the 3Rs principles, originally proposed by Russell & Burch, we critically assess them, asking if they can be Replaced, Reduced or Refined. We find that the 3Rs principles have survived several replacement challenges, and the different sets of principles (3Ss, 3Vs, 4Fs and 6Ps) are complementary, a natural refinement of the 3Rs and are ripe for integration into a unified set of principles, as proposed here. We also overview international frameworks and documents, many of which incorporate the 3Rs, including the Basel Declaration on animal research. Finally, we propose that the available animal research guidance documents across countries can be consolidated, to provide a similar structure as seen in the Helsinki Declaration, potentially as part of an amended Basel Declaration on animal research. In summary, we observe substantially greater agreement on and the possibility for unification of the sets of ethical principles and documents that can guide animal research internationally.
RESUMEN
Ecological chemosensory stimuli almost always evoke responses in more than one sensory system. Moreover, any sensory processing takes place along a hierarchy of brain regions. So far, the field of chemosensory neuroimaging is dominated by studies that examine the role of brain regions in isolation. However, to completely understand neural processing of chemosensation, we must also examine interactions between regions. In general, the use of connectivity methods has increased in the neuroimaging field, providing important insights to physical sensory processing, such as vision, audition, and touch. A similar trend has been observed in chemosensory neuroimaging, however, these established techniques have largely not been rigorously applied to imaging studies on the chemical senses, leaving network insights overlooked. In this article, we first highlight some recent work in chemosensory connectomics and we summarize different connectomics techniques. Then, we outline specific challenges for chemosensory connectome neuroimaging studies. Finally, we review best practices from the general connectomics and neuroimaging fields. We recommend future studies to develop or use the following methods we perceive as key to improve chemosensory connectomics: (1) optimized study designs, (2) reporting guidelines, (3) consensus on brain parcellations, (4) consortium research, and (5) data sharing.
RESUMEN
Identifying the circuits responsible for cognition and understanding their embedded computations is a challenge for neuroscience. We establish here a hierarchical cross-scale approach, from behavioral modeling and fMRI in task-performing mice to cellular recordings, in order to disentangle local network contributions to olfactory reinforcement learning. At mesoscale, fMRI identifies a functional olfactory-striatal network interacting dynamically with higher-order cortices. While primary olfactory cortices respectively contribute only some value components, the downstream olfactory tubercle of the ventral striatum expresses comprehensively reward prediction, its dynamic updating, and prediction error components. In the tubercle, recordings reveal two underlying neuronal populations with non-redundant reward prediction coding schemes. One population collectively produces stabilized predictions as distributed activity across neurons; in the other, neurons encode value individually and dynamically integrate the recent history of uncertain outcomes. These findings validate a cross-scale approach to mechanistic investigations of higher cognitive functions in rodents.
Asunto(s)
Refuerzo en Psicología , Estriado Ventral , Animales , Corteza Cerebral , Imagen por Resonancia Magnética , Ratones , Tubérculo Olfatorio , Recompensa , Estriado Ventral/diagnóstico por imagenRESUMEN
Macroscopic taste processing connectivity was investigated using functional magnetic resonance imaging during the presentation of sour, salty, and sweet tastants in anesthetized macaque monkeys. This examination of taste processing affords the opportunity to study the interactions between sensory regions, central integrators, and effector areas. Here, 58 brain regions associated with gustatory processing in primates were aggregated, collectively forming the gustatory connectome. Regional regression coefficients (or ß-series) obtained during taste stimulation were correlated to infer functional connectivity. This connectivity was then evaluated by assessing its laterality, modularity and centrality. Our results indicate significant correlations between same region pairs across hemispheres in a bilaterally interconnected scheme for taste processing throughout the gustatory connectome. Using unbiased community detection, three bilateral sub-networks were detected within the graph of the connectome. This analysis revealed clustering of 16 medial cortical structures, 24 lateral structures, and 18 subcortical structures. Across the three sub-networks, a similar pattern was observed in the differential processing of taste qualities. In all cases, the amplitude of the response was greatest for sweet, but the network connectivity was strongest for sour and salty tastants. The importance of each region in taste processing was computed using node centrality measures within the connectome graph, showing centrality to be correlated across hemispheres and, to a smaller extent, region volume. Connectome hubs exhibited varying degrees of centrality with a prominent leftward increase in insular cortex centrality. Taken together, these criteria illustrate quantifiable characteristics of the macaque monkey gustatory connectome and its organization as a tri-modular network, which may reflect the general medial-lateral-subcortical organization of salience and interoception processing networks.
RESUMEN
Digitized neuroanatomical atlases that can be overlaid onto functional data are crucial for localizing brain structures and analyzing functional networks identified by neuroimaging techniques. To aid in functional and structural data analysis, we have created a comprehensive parcellation of the rhesus macaque subcortex using a high-resolution ex vivo structural imaging scan. This anatomical scan and its parcellation were warped to the updated NIMH Macaque Template (NMT v2), an in vivo population template, where the parcellation was refined to produce the Subcortical Atlas of the Rhesus Macaque (SARM) with 210 primary regions-of-interest (ROIs). The subcortical parcellation and nomenclature reflect those of the 4th edition of the Rhesus Monkey Brain in Stereotaxic Coordinates (Paxinos et al., in preparation), rather than proposing yet another novel atlas. The primary ROIs are organized across six spatial hierarchical scales from small, fine-grained ROIs to broader composites of multiple ROIs, making the SARM suitable for analysis at different resolutions and allowing broader labeling of functional signals when more accurate localization is not possible. As an example application of this atlas, we have included a functional localizer for the dorsal lateral geniculate (DLG) nucleus in three macaques using a visual flickering checkerboard stimulus, identifying and quantifying significant fMRI activation in this atlas region. The SARM has been made openly available to the neuroimaging community and can easily be used with common MRI data processing software, such as AFNI, where the atlas has been embedded into the software alongside cortical macaque atlases.
Asunto(s)
Atlas como Asunto , Encéfalo/anatomía & histología , Encéfalo/fisiología , Macaca mulatta/anatomía & histología , Macaca mulatta/fisiología , Neuroimagen , Animales , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , MasculinoRESUMEN
Scientific excellence is a necessity for progress in biomedical research. As research becomes ever more international, establishing international collaborations will be key to advancing our scientific knowledge. Understanding the similarities in standards applied by different nations to animal research, and where the differences might lie, is crucial. Cultural differences and societal values will also contribute to these similarities and differences between countries and continents. Our overview is not comprehensive for all species, but rather focuses on non-human primate (NHP) research, involving New World marmosets and Old World macaques, conducted in countries where NHPs are involved in neuroimaging research. Here, an overview of the ethics and regulations is provided to help assess welfare standards amongst primate research institutions. A comparative examination of these standards was conducted to provide a basis for establishing a common set of standards for animal welfare. These criteria may serve to develop international guidelines, which can be managed by an International Animal Welfare and Use Committee (IAWUC). Internationally, scientists have a moral responsibility to ensure excellent care and welfare of their animals, which in turn, influences the quality of their research. When working with animal models, maintaining a high quality of care ("culture of care") and welfare is essential. The transparent promotion of this level of care and welfare, along with the results of the research and its impact, may reduce public concerns associated with animal experiments in neuroscience research.
Asunto(s)
Acceso a la Información/ética , Bienestar del Animal/ética , Investigación Biomédica/ética , Internacionalidad , Neurociencias/ética , Bienestar del Animal/legislación & jurisprudencia , Animales , Investigación Biomédica/legislación & jurisprudencia , Miembro de Comité , Humanos , Neurociencias/legislación & jurisprudencia , PrimatesRESUMEN
Olfaction supports a multitude of behaviors vital for social communication and interactions between conspecifics. Intact sensory processing is contingent upon proper circuit wiring. Disturbances in genetic factors controlling circuit assembly and synaptic wiring can lead to neurodevelopmental disorders, such as autism spectrum disorder (ASD), where impaired social interactions and communication are core symptoms. The variability in behavioral phenotype expression is also contingent upon the role environmental factors play in defining genetic expression. Considering the prevailing clinical diagnosis of ASD, research on therapeutic targets for autism is essential. Behavioral impairments may be identified along a range of increasingly complex social tasks. Hence, the assessment of social behavior and communication is progressing towards more ethologically relevant tasks. Garnering a more accurate understanding of social processing deficits in the sensory domain may greatly contribute to the development of therapeutic targets. With that framework, studies have found a viable link between social behaviors, circuit wiring, and altered neuronal coding related to the processing of salient social stimuli. Here, the relationship between social odor processing in rodents and humans is examined in the context of health and ASD, with special consideration for how genetic expression and neuronal connectivity may regulate behavioral phenotypes.
Asunto(s)
Trastorno Autístico/genética , Receptores Odorantes/fisiología , Animales , Humanos , Ratones , NeuronasRESUMEN
Neuroimaging non-human primates (NHPs) is a growing, yet highly specialized field of neuroscience. Resources that were primarily developed for human neuroimaging often need to be significantly adapted for use with NHPs or other animals, which has led to an abundance of custom, in-house solutions. In recent years, the global NHP neuroimaging community has made significant efforts to transform the field towards more open and collaborative practices. Here we present the PRIMatE Resource Exchange (PRIME-RE), a new collaborative online platform for NHP neuroimaging. PRIME-RE is a dynamic community-driven hub for the exchange of practical knowledge, specialized analytical tools, and open data repositories, specifically related to NHP neuroimaging. PRIME-RE caters to both researchers and developers who are either new to the field, looking to stay abreast of the latest developments, or seeking to collaboratively advance the field .
Asunto(s)
Acceso a la Información , Neuroimagen/métodos , Sistemas en Línea , Primates/anatomía & histología , Primates/fisiología , AnimalesRESUMEN
TReND is a volunteer-scientist run charity dedicated to promoting research and education on the African continent. Focusing on neuroscience, we discuss approaches to address some of the factors that currently stifle Africa's scientific development and our experience in implementing them.