Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Virol ; 98(7): e0070724, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38953655

RESUMEN

Human norovirus was discovered more than five decades ago and is a widespread cause of outbreaks of acute gastroenteritis. There are no approved vaccines or antivirals currently available. However, norovirus inhibitors, including capsid-specific monoclonal antibodies (Mabs) and nanobodies, have recently shown promising results. Several Mabs and nanobodies were found to inhibit norovirus replication using a human intestinal enteroid (HIE) culture system and/or could block norovirus attachment to histo-blood group antigen (HBGA) co-factors. In our pursuit to develop a single broad-spectrum norovirus therapeutic, we continued our analysis and development of a cross-reactive and HBGA interfering nanobody (NB26). To improve NB26 binding capacity and therapeutic potential, we conjugated NB26 onto a human IgG Fc domain (Fc-NB26). We confirmed that Fc-NB26 cross-reacts with genetically diverse GII genotype capsid protruding (P) domains (GII.8, GII.14, GII.17, GII.24, GII.26, and GII.NA1) using a direct enzyme-linked immunosorbent assay. Furthermore, X-ray crystallography structures of these P domains and structures of other GII genotypes reveal that the NB26 binding site is largely conserved, validating its broad reactivity. We showed that Fc-NB26 has ~100-fold higher affinity toward the norovirus P domain compared to native NB26. We also found that both NB26 and Fc-NB26 neutralize human norovirus replication in the HIE culture system. Furthermore, the mode of inhibition confirmed that like NB26, Fc-NB26 caused norovirus particle disassembly and aggregation. Overall, these new findings demonstrate that structural modifications to nanobodies can improve their therapeutic potential.IMPORTANCEDeveloping vaccines and antivirals against norovirus remains a challenge, mainly due to the constant genetic and antigenic evolution. Moreover, re-infection with genetically related and/or antigenic variants is not uncommon. We further developed our leading norovirus nanobody (NB26) that indirectly interfered with norovirus binding to HBGAs, by converting NB26 into a dimeric Fc-linked Nanobody (Fc-NB26). We found that Fc-NB26 had improved binding affinity and neutralization capacity compared with native NB26. Using X-ray crystallography, we showed this nanobody engaged highly conserved capsid residues among genetically diverse noroviruses. Development of such broadly reactive potent therapeutic nanobodies delivered as a slow-releasing prophylactic could be of exceptional value for norovirus outbreaks, especially for the prevention or treatment of severe acute gastroenteritis in high-risk groups such as the young, elderly, and immunocompromised.


Asunto(s)
Infecciones por Caliciviridae , Proteínas de la Cápside , Norovirus , Anticuerpos de Dominio Único , Norovirus/genética , Norovirus/efectos de los fármacos , Norovirus/inmunología , Humanos , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/química , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/virología , Infecciones por Caliciviridae/terapia , Antivirales/farmacología , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/química , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas , Cápside/metabolismo , Cápside/inmunología , Antígenos de Grupos Sanguíneos/metabolismo , Replicación Viral/efectos de los fármacos , Gastroenteritis/virología , Inmunoglobulina G/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología
2.
Sci Adv ; 10(26): eadn3310, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38924412

RESUMEN

Thoeris defense systems protect bacteria from infection by phages via abortive infection. In these systems, ThsB proteins serve as sensors of infection and generate signaling nucleotides that activate ThsA effectors. Silent information regulator and SMF/DprA-LOG (SIR2-SLOG) containing ThsA effectors are activated by cyclic ADP-ribose (ADPR) isomers 2'cADPR and 3'cADPR, triggering abortive infection via nicotinamide adenine dinucleotide (NAD+) depletion. Here, we characterize Thoeris systems with transmembrane and macro domain (TM-macro)-containing ThsA effectors. We demonstrate that ThsA macro domains bind ADPR and imidazole adenine dinucleotide (IAD), but not 2'cADPR or 3'cADPR. Combining crystallography, in silico predictions, and site-directed mutagenesis, we show that ThsA macro domains form nucleotide-induced higher-order oligomers, enabling TM domain clustering. We demonstrate that ThsB can produce both ADPR and IAD, and we identify a ThsA TM-macro-specific ThsB subfamily with an active site resembling deoxy-nucleotide and deoxy-nucleoside processing enzymes. Collectively, our study demonstrates that Thoeris systems with SIR2-SLOG and TM-macro ThsA effectors trigger abortive infection via distinct mechanisms.


Asunto(s)
Dominios Proteicos , Bacteriófagos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Modelos Moleculares , NAD/metabolismo , Unión Proteica
3.
J AOAC Int ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775648

RESUMEN

BACKGROUND: Bovine lactoferrin is increasingly being used as an ingredient in infant formula manufacture to enhance nutritional efficacy through the provision of growth, immunoprotective and antimicrobial factors to the neonate. OBJECTIVE: To evaluate method reproducibility of AOAC 2021.07 Official First Action method for compliance with the performance requirements described in Standard Method Performance Requirement (SMPR®) 2020.005. METHOD: Eight laboratories participated in the analysis of blind-duplicate samples of seven nutritional products. Samples were diluted in buffer, and an optical biosensor immunoassay was used in a direct assay format to quantitate bovine lactoferrin by its interaction with an immobilized anti-lactoferrin antibody. Quantitation was accomplished by the external standard technique with interpolation from a 4-parameter calibration regression. RESULTS: After outliers were removed, precision as reproducibility was found to be within limits set in SMPR 2020.005 (≤ 9%) for six out of seven samples and all had acceptable HorRatR values ranging from 1.0 to 2.1. Additionally, comparison with an alternative independent Stakeholder Panel on Infant Formula and Adult Nutritionals (SPIFAN) First Action method (heparin clean-up LC UV), showed negligible difference between results. CONCLUSIONS: The method described is suitable for the quantification of intact, undenatured bovine lactoferrin in powdered infant formulas. The SPIFAN Expert Review Panel evaluated the method and accompanying validation data from this multi-laboratory testing study in July 2023 and recommended Official Method 2021.07 for adoption as a Final Action Official Method. HIGHLIGHTS: A multi-laboratory validation study of an automated optical biosensor immunoassay for the determination of intact, undenatured bovine lactoferrin is described.

4.
Immunol Cell Biol ; 102(7): 593-604, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38757764

RESUMEN

Delta inulin, or Advax, is a polysaccharide vaccine adjuvant that significantly enhances vaccine-mediated immune responses against multiple pathogens and was recently licensed for use in the coronavirus disease 2019 (COVID-19) vaccine SpikoGen. Although Advax has proven effective as an immune adjuvant, its specific binding targets have not been characterized. In this report, we identify a cellular receptor for Advax recognition. In vitro uptake of Advax particles by macrophage cell lines was substantially greater than that of latex beads of comparable size, suggesting an active uptake mechanism by phagocytic cells. Using a lectin array, Advax particles were recognized by lectins specific for various carbohydrate structures including mannosyl, N-acetylgalactosamine and galactose moieties. Expression in nonphagocytic cells of dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), a C-type lectin receptor, resulted in enhanced uptake of fluorescent Advax particles compared with mock-transfected cells. Advax uptake was reduced with the addition of ethylenediaminetetraacetic acid and mannan to cells, which are known inhibitors of DC-SIGN function. Finally, a specific blockade of DC-SIGN using a neutralizing antibody abrogated Advax uptake in DC-SIGN-expressing cells. Together, these results identify DC-SIGN as a putative receptor for Advax. Given the known immunomodulatory role of DC-SIGN, the findings described here have implications for the use of Advax adjuvants in humans and inform future mechanistic studies.


Asunto(s)
Adyuvantes Inmunológicos , Moléculas de Adhesión Celular , Inulina , Lectinas Tipo C , Receptores de Superficie Celular , Humanos , Adyuvantes Inmunológicos/farmacología , Adyuvantes de Vacunas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular , COVID-19/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Inulina/metabolismo , Inulina/análogos & derivados , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Mananos/metabolismo , Receptores de Superficie Celular/metabolismo
5.
Microbiol Spectr ; 10(6): e0364622, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36374080

RESUMEN

Campylobacter jejuni responds to extracellular stimuli via transducer-like chemoreceptors (Tlps). Here, we describe receptor-ligand interactions of a unique paralogue family of dCache_1 (double Calcium channels and chemotaxis) chemoreceptors: Tlp2, Tlp3, and Tlp4. Phylogenetic analysis revealed that Tlp2, Tlp3, and Tlp4 receptors may have arisen through domain duplications, followed by a divergent evolutionary drift, with Tlp3 emerging more recently, and unexpectedly, responded to glycans, as well as multiple organic and amino acids with overlapping specificities. All three Tlps interacted with five monosaccharides and complex glycans, including Lewis's antigens, P antigens, and fucosyl GM1 ganglioside, indicating a potential role in host-pathogen interactions. Analysis of chemotactic motility of single, double, and triple mutants indicated that these chemoreceptors are likely to work together to balance responses to attractants and repellents to modulate chemotaxis in C. jejuni. Molecular docking experiments, in combination with saturation transfer difference nuclear magnetic resonance spectroscopy and competition surface plasmon resonance analysis, illustrated that the ligand-binding domain of Tlp3 possess one major binding pocket with two overlapping, but distinct binding sites able to interact with multiple ligands. A diverse sensory repertoire could provide C. jejuni with the ability to modulate responses to attractant and repellent signals and allow for adaptation in host-pathogen interactions. IMPORTANCE Campylobacter jejuni responds to extracellular stimuli via transducer-like chemoreceptors (Tlps). This remarkable sensory perception mechanism allows bacteria to sense environmental changes and avoid unfavorable conditions or to maneuver toward nutrient sources and host cells. Here, we describe receptor-ligand interactions of a unique paralogue family of chemoreceptors, Tlp2, Tlp3, and Tlp4, that may have arisen through domain duplications, followed by a divergent evolutionary drift, with Tlp3 emerging more recently. Unlike previous reports of ligands interacting with sensory proteins, Tlp2, Tlp3, and Tlp4 responded to many types of chemical compounds, including simple and complex sugars such as those present on human blood group antigens and gangliosides, indicating a potential role in host-pathogen interactions. Diverse sensory repertoire could provide C. jejuni with the ability to modulate responses to attractant and repellent signals and allow for adaptation in host-pathogen interactions.


Asunto(s)
Proteínas Bacterianas , Campylobacter jejuni , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/genética , Ligandos , Simulación del Acoplamiento Molecular , Filogenia , Quimiotaxis
6.
Science ; 377(6614): eadc8969, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36048923

RESUMEN

Cyclic adenosine diphosphate (ADP)-ribose (cADPR) isomers are signaling molecules produced by bacterial and plant Toll/interleukin-1 receptor (TIR) domains via nicotinamide adenine dinucleotide (oxidized form) (NAD+) hydrolysis. We show that v-cADPR (2'cADPR) and v2-cADPR (3'cADPR) isomers are cyclized by O-glycosidic bond formation between the ribose moieties in ADPR. Structures of 2'cADPR-producing TIR domains reveal conformational changes that lead to an active assembly that resembles those of Toll-like receptor adaptor TIR domains. Mutagenesis reveals a conserved tryptophan that is essential for cyclization. We show that 3'cADPR is an activator of ThsA effector proteins from the bacterial antiphage defense system termed Thoeris and a suppressor of plant immunity when produced by the effector HopAM1. Collectively, our results reveal the molecular basis of cADPR isomer production and establish 3'cADPR in bacteria as an antiviral and plant immunity-suppressing signaling molecule.


Asunto(s)
ADP-Ribosil Ciclasa , Proteínas Adaptadoras del Transporte Vesicular , Bacterias , Proteínas Bacterianas , ADP-Ribosa Cíclica , Inmunidad de la Planta , Receptores Toll-Like , ADP-Ribosil Ciclasa/química , ADP-Ribosil Ciclasa/genética , ADP-Ribosil Ciclasa/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Bacterias/inmunología , Bacterias/virología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADP-Ribosa Cíclica/biosíntesis , ADP-Ribosa Cíclica/química , Isomerismo , NAD/metabolismo , Dominios Proteicos , Receptores de Interleucina-1/química , Transducción de Señal , Receptores Toll-Like/química , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Triptófano/química , Triptófano/genética
7.
Elife ; 102021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34870595

RESUMEN

Axon loss underlies symptom onset and progression in many neurodegenerative disorders. Axon degeneration in injury and disease is promoted by activation of the NAD-consuming enzyme SARM1. Here, we report a novel activator of SARM1, a metabolite of the pesticide and neurotoxin vacor. Removal of SARM1 completely rescues mouse neurons from vacor-induced neuron and axon death in vitro and in vivo. We present the crystal structure of the Drosophila SARM1 regulatory domain complexed with this activator, the vacor metabolite VMN, which as the most potent activator yet known is likely to support drug development for human SARM1 and NMNAT2 disorders. This study indicates the mechanism of neurotoxicity and pesticide action by vacor, raises important questions about other pyridines in wider use today, provides important new tools for drug discovery, and demonstrates that removing SARM1 can robustly block programmed axon death induced by toxicity as well as genetic mutation.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Axones/patología , Proteínas del Citoesqueleto/genética , Degeneración Nerviosa/fisiopatología , Neurotoxinas/farmacología , Compuestos de Fenilurea/farmacología , Animales , Proteínas del Dominio Armadillo/metabolismo , Axones/efectos de los fármacos , Proteínas del Citoesqueleto/metabolismo , Femenino , Masculino , Ratones , Degeneración Nerviosa/inducido químicamente , Rodenticidas/farmacología
8.
ACS Infect Dis ; 7(8): 2383-2389, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34170120

RESUMEN

The transmission of Plasmodium spp. sporozoites to the mammalian host is the first step in the initiation of the mosquito-borne disease known as malaria. The exact route of transmission from the bloodstream to the liver is still not clearly elucidated, and identification of the host glycan structures bound by the sporozoites may inform as to which host cells are involved. Here, we provide a comprehensive analysis of the glycan structures that sporozoites from the human pathogen, P. falciparum, and the rodent pathogen, P. yoelii, recognize and bind. Glycan array analysis was used to profile the glycans bound by the sporozoites, and the binding affinities of these sporozoite-glycan interactions were then determined by surface plasmon resonance. Data showed that the different Plasmodium spp. bind different classes of glycans. P. falciparum was observed to bind to glycans with terminal N-acetylgalactosamine (GalNAc) or Galactose (Gal) linked to a GalNAc, and the highest-affinity observed was with the GalNAc monosaccharide (12.5 nM). P. yoelii bound glycosaminoglycans, mannosyl glycans, Gal linked to N-acetylglucosamine structures, and the αGal epitope. The highest-affinity interaction for P. yoelii was with the αGal epitope (31.4 nM). This is the first study to identify the key host glycan structures recognized by human and rodent Plasmodium spp. sporozoites. An understanding of how Plasmodium sporozoites interact with the specific glycan structures identified here may provide further insight into this infectious disease that could help direct the design of an effective therapeutic.


Asunto(s)
Malaria Falciparum , Plasmodium yoelii , Animales , Humanos , Plasmodium falciparum , Roedores , Esporozoítos
9.
J Fish Dis ; 44(9): 1355-1367, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33990985

RESUMEN

Amoebic gill disease (AGD) is caused by the marine amoeba Neoparamoeba perurans, a facultative parasite. Despite the significant impact this disease has on production of Atlantic salmon worldwide, the mechanisms involved in host-parasite interaction remains unknown. Excessive gill mucus secretion is reported as a host defence mechanism to prevent microbial colonization in the gill epithelium. Despite this response, N. perurans still attaches and proliferates. The present study aimed to investigate the interaction between N. perurans and mucin, the most abundant component in mucus. An in vitro adhesion assay using bovine submaxillary mucin (BSM) demonstrated that amoeba binding to mucin-coated substrate was significantly higher than to the BSA control. This binding interaction is likely glycan-mediated as pre-incubation with galactose, galactosamine, N-acetylgalactosamine and fucose reduced mucin adhesion to control levels. The ability of N. perurans to secrete proteases that target mucin was also investigated. Protease activity was detected in the amoeba culture media in the presence of BSM, but not when protease inhibitor was added. Mucin degradation was visually assessed on protein gels. This study provides preliminary evidence that N. perurans has developed mechanisms to interact with and evade mucus by binding to mucin glycan receptors and secreting proteases with mucolytic activity.


Asunto(s)
Amebozoos/fisiología , Mucinas/metabolismo , Péptido Hidrolasas/metabolismo , Amebiasis , Amebozoos/enzimología , Animales , Bovinos , Enfermedades de los Peces/parasitología , Branquias/parasitología , Péptido Hidrolasas/química
10.
Neuron ; 109(7): 1118-1136.e11, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33657413

RESUMEN

Axon degeneration is a central pathological feature of many neurodegenerative diseases. Sterile alpha and Toll/interleukin-1 receptor motif-containing 1 (SARM1) is a nicotinamide adenine dinucleotide (NAD+)-cleaving enzyme whose activation triggers axon destruction. Loss of the biosynthetic enzyme NMNAT2, which converts nicotinamide mononucleotide (NMN) to NAD+, activates SARM1 via an unknown mechanism. Using structural, biochemical, biophysical, and cellular assays, we demonstrate that SARM1 is activated by an increase in the ratio of NMN to NAD+ and show that both metabolites compete for binding to the auto-inhibitory N-terminal armadillo repeat (ARM) domain of SARM1. We report structures of the SARM1 ARM domain bound to NMN and of the homo-octameric SARM1 complex in the absence of ligands. We show that NMN influences the structure of SARM1 and demonstrate via mutagenesis that NMN binding is required for injury-induced SARM1 activation and axon destruction. Hence, SARM1 is a metabolic sensor responding to an increased NMN/NAD+ ratio by cleaving residual NAD+, thereby inducing feedforward metabolic catastrophe and axonal demise.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Axones/patología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , NAD/metabolismo , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Mononucleótido de Nicotinamida/metabolismo , Animales , Activación Enzimática , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis , Nicotinamida-Nucleótido Adenililtransferasa/genética , Conformación Proteica
11.
mBio ; 12(1)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622724

RESUMEN

Chaperone-usher (CU) fimbriae are the most abundant Gram-negative bacterial fimbriae, with 38 distinct CU fimbria types described in Escherichia coli alone. Some E. coli CU fimbriae have been well characterized and bind to specific glycan targets to confer tissue tropism. For example, type 1 fimbriae bind to α-d-mannosylated glycoproteins such as uroplakins in the bladder via their tip-located FimH adhesin, leading to colonization and invasion of the bladder epithelium. Despite this, the receptor-binding affinity of many other E. coli CU fimbria types remains poorly characterized. Here, we used a recombinant E. coli strain expressing different CU fimbriae, in conjunction with glycan array analysis comprising >300 glycans, to dissect CU fimbria receptor specificity. We initially validated the approach by demonstrating the purified FimH lectin-binding domain and recombinant E. coli expressing type 1 fimbriae bound to a similar set of glycans. This technique was then used to map the glycan binding affinity of six additional CU fimbriae, namely, P, F1C, Yqi, Mat/Ecp, K88, and K99 fimbriae. The binding affinity was determined using whole-bacterial-cell surface plasmon resonance. This work describes new information in fimbrial specificity and a rapid and scalable system to define novel adhesin-glycan interactions that underpin bacterial colonization and disease.IMPORTANCE Understanding the tropism of pathogens for host and tissue requires a complete understanding of the host receptors targeted by fimbrial adhesins. Furthermore, blocking adhesion is a promising strategy to counter increasing antibiotic resistance and is enabled by the identification of host receptors. Here, we use a defined E. coli heterologous expression system to identify glycan receptors for six chaperone-usher fimbriae and identify novel receptors that are consistent with their known function. The same system was used to measure the kinetics of binding to the identified glycan, wherein bacterial cells were immobilized onto a biosensor chip and the interactions with glycans were quantified by surface plasmon resonance. This novel, dual-level analysis, where screening for the repertoire of glycan binding and the hierarchy of affinity of the identified ligands is determined directly from a natively expressed fimbrial structure on the bacterial cell surface, is superior in both throughput and biological relevance.


Asunto(s)
Adhesión Bacteriana , Escherichia coli/genética , Proteínas Fimbrias/genética , Fimbrias Bacterianas/metabolismo , Polisacáridos/metabolismo , Adhesinas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Cinética , Unión Proteica
12.
Sci Signal ; 14(664)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33402336

RESUMEN

Campylobacter jejuni is a bacterial pathogen that is a common cause of enteritis in humans. We identified a previously uncharacterized type of sensory domain in the periplasmic region of the C. jejuni chemoreceptor Tlp10, termed the DAHL domain, that is predicted to have a bimodular helical architecture. Through two independent ligand-binding sites in this domain, Tlp10 responded to molecular aspartate, isoleucine, fumarate, malate, fucose, and mannose as attractants and to arginine, galactose, and thiamine as repellents. Tlp10 also recognized glycan ligands when present as terminal and intermediate residues of complex structures, such as the fucosylated human ganglioside GM1 and Lewisa antigen. A tlp10 mutant strain lacking the ligand-binding sites was attenuated in its ability to colonize avian caeca and to adhere to cultured human intestinal cells, indicating the potential involvement of the DAHL domain in host colonization and disease. The Tlp10 intracellular signaling domain interacted with the scaffolding proteins CheV and CheW, which couple chemoreceptors to intracellular signaling machinery, and with the signaling domains of other chemoreceptors, suggesting a key role for Tlp10 in signal transduction and incorporation into sensory arrays. We identified the DAHL domain in other bacterial signal transduction proteins, including the essential virulence induction protein VirA from the plant pathogen Agrobacterium tumefaciens Together, these results suggest a potential link between Tlp10 and C. jejuni virulence.


Asunto(s)
Campylobacter jejuni/metabolismo , Quimiotaxis , Dominios Proteicos , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Arginina/metabolismo , Ácido Aspártico/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Células CACO-2 , Campylobacter jejuni/patogenicidad , Campylobacter jejuni/fisiología , Fucosa/metabolismo , Fumaratos/metabolismo , Galactosa/metabolismo , Células HCT116 , Humanos , Isoleucina/metabolismo , Ligandos , Malatos/metabolismo , Manosa/metabolismo , Filogenia , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Alineación de Secuencia , Tiamina/metabolismo , Virulencia
13.
Pharmaceuticals (Basel) ; 15(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35056083

RESUMEN

Fibrillarin (FBL) is an essential and evolutionarily highly conserved S-adenosyl methionine (SAM) dependent methyltransferase. It is the catalytic component of a multiprotein complex that facilitates 2'-O-methylation of ribosomal RNAs (rRNAs), a modification essential for accurate and efficient protein synthesis in eukaryotic cells. It was recently established that human FBL (hFBL) is critical for Nipah, Hendra, and respiratory syncytial virus infections. In addition, overexpression of hFBL contributes towards tumorgenesis and is associated with poor survival in patients with breast cancer, suggesting that hFBL is a potential target for the development of both antiviral and anticancer drugs. An attractive strategy to target cofactor-dependent enzymes is the selective inhibition of cofactor binding, which has been successful for the development of inhibitors against several protein methyltransferases including PRMT5, DOT1L, and EZH2. In this work, we solved crystal structures of the methyltransferase domain of hFBL in apo form and in complex with the cofactor SAM. Screening of a fluorinated fragment library, via X-ray crystallography and 19F NMR spectroscopy, yielded seven hit compounds that competed with cofactor binding, two of which resulted in co-crystal structures. One of these structures revealed unexpected conformational variability in the cofactor binding site, which allows it to accommodate a compound significantly different from SAM. Our structural data provide critical information for the design of selective cofactor competitive inhibitors targeting hFBL, and preliminary elaboration of hit compounds has led to additional cofactor site binders.

14.
Methods Mol Biol ; 2136: 145-151, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32430818

RESUMEN

Glycans, also known as carbohydrates, are abundant upon cell surfaces, where they often mediate host-pathogen interactions. The specific recognition of host glycans by pathogenic lectins is an important process that allows the adherence of bacteria to the host epithelial surface in many species, including Group A Streptococcus (GAS). Glycan microarrays present a sensitive, high-throughput approach for identifying novel lectin-glycan interactions and can be applied in the context of whole bacteria or purified bacterial proteins.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Polisacáridos/metabolismo , Streptococcus pyogenes/metabolismo , Adhesión Bacteriana/fisiología , Interacciones Huésped-Patógeno/fisiología , Lectinas/metabolismo , Análisis por Micromatrices
15.
Sci Rep ; 10(1): 6745, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317661

RESUMEN

Characterisation of protein function based solely on homology searches may overlook functions under specific environmental conditions, or the possibility of a protein having multiple roles. In this study we investigated the role of YtfB, a protein originally identified in a genome-wide screen to cause inhibition of cell division, and has demonstrated to localise to the Escherichia coli division site with some degree of glycan specificity. Interestingly, YtfB also shows homology to the virulence factor OapA from Haemophilus influenzae, which is important for adherence to epithelial cells, indicating the potential of additional function(s) for YtfB. Here we show that E. coli YtfB binds to N'acetylglucosamine and mannobiose glycans with high affinity. The loss of ytfB results in a reduction in the ability of the uropathogenic E. coli strain UTI89 to adhere to human kidney cells, but not to bladder cells, suggesting a specific role in the initial adherence stage of ascending urinary tract infections. Taken together, our results suggest a role for YtfB in adhesion to specific eukaryotic cells, which may be additional, or complementary, to its role in cell division. This study highlights the importance of understanding the possible multiple functions of proteins based on homology, which may be specific to different environmental conditions.


Asunto(s)
Adhesión Bacteriana/genética , Proteínas de Ciclo Celular/genética , División Celular/genética , Proteínas de Escherichia coli/genética , Escherichia coli Uropatógena/genética , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Secuencia de Carbohidratos , Adhesión Celular , Proteínas de Ciclo Celular/deficiencia , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Expresión Génica , Células HEK293 , Haemophilus influenzae/química , Haemophilus influenzae/metabolismo , Humanos , Mananos/química , Mananos/metabolismo , Filogenia , Polisacáridos/química , Polisacáridos/metabolismo , Unión Proteica , Infecciones Urinarias/microbiología , Infecciones Urinarias/patología , Escherichia coli Uropatógena/clasificación , Escherichia coli Uropatógena/citología , Escherichia coli Uropatógena/patogenicidad , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
16.
FASEB J ; 33(10): 10808-10818, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31262188

RESUMEN

Colonization of the oropharynx is the initial step in Group A Streptococcus (GAS) pharyngeal infection. We have previously reported that the highly virulent M1T1 GAS clone attaches to oral epithelial cells via M1 protein interaction with blood group antigen carbohydrate structures. Here, we have identified that colonization of human oral epithelial cells by GAS serotypes M3 and M12 is mediated by human blood group antigens [ABO(H)] and Lewis (Le) antigen expression. Removal of linkage-specific fucose, galactose, N-acetylgalactosamine, and sialic acid modulated GAS colonization, dependent on host ABO(H) blood group and Le expression profile. Furthermore, N-linked glycans from human salivary glycoproteins, when released and purified, were potent inhibitors of M1, M3, and M12 GAS colonization ex vivo. These data highlight the important role played by human protein glycosylation patterns in GAS attachment to oral epithelial cell surfaces.-De Oliveira, D. M. P., Everest-Dass, A., Hartley-Tassell, L., Day, C. J., Indraratna, A., Brouwer, S., Cleary, A., Kautto, L., Gorman, J., Packer, N. H., Jennings, M. P., Walker, M. J., Sanderson-Smith, M. L. Human glycan expression patterns influence Group A streptococcal colonization of epithelial cells.


Asunto(s)
Interacciones Microbiota-Huesped/fisiología , Polisacáridos/metabolismo , Streptococcus pyogenes/patogenicidad , Antígenos Bacterianos/fisiología , Adhesión Bacteriana/inmunología , Adhesión Bacteriana/fisiología , Proteínas de la Membrana Bacteriana Externa/fisiología , Antígenos de Grupos Sanguíneos/química , Proteínas Portadoras/fisiología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Glicosilación , Interacciones Microbiota-Huesped/inmunología , Humanos , Técnicas In Vitro , Polisacáridos/química , Polisacáridos/inmunología , Unión Proteica , Proteínas y Péptidos Salivales/química , Proteínas y Péptidos Salivales/inmunología , Proteínas y Péptidos Salivales/metabolismo , Infecciones Estreptocócicas/etiología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/crecimiento & desarrollo , Streptococcus pyogenes/fisiología , Virulencia/fisiología
17.
mBio ; 10(3)2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31064827

RESUMEN

Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative bacterial pathogen that is adapted exclusively to human hosts. NTHi utilizes sialic acid from the host as a carbon source and as a terminal sugar on the outer membrane glycolipid lipooligosaccharide (LOS). Sialic acid expressed on LOS is critical in NTHi biofilm formation and immune evasion. There are two major forms of sialic acids in most mammals, N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), the latter of which is derived from Neu5Ac. Humans lack the enzyme to convert Neu5Ac to Neu5Gc and do not express Neu5Gc in normal tissues; instead, Neu5Gc is recognized as a foreign antigen. A recent study showed that dietary Neu5Gc can be acquired by NTHi colonizing humans and then presented on LOS, which acts as an antigen for the initial induction of anti-Neu5Gc antibodies. Here we examined Neu5Gc uptake and presentation on NTHi LOS. We show that, although Neu5Gc and Neu5Ac are utilized equally well as sole carbon sources, Neu5Gc is not incorporated efficiently into LOS. When equal amounts of Neu5Gc and Neu5Ac are provided in culture media, there is ∼4-fold more Neu5Ac incorporated into LOS, suggesting a bias in a step of the LOS biosynthetic pathway. CMP-Neu5Ac synthetase (SiaB) was shown to have ∼4,000-fold-higher catalytic efficiency for Neu5Ac than for Neu5Gc. These data suggest that NTHi has adapted preferential utilization of Neu5Ac, thus avoiding presentation of the nonhuman Neu5Gc in the bacterial cell surface. The selective pressure for this adaptation may represent the human antibody response to the Neu5Gc xenoantigen.IMPORTANCE Host-adapted bacterial pathogens such as NTHi cannot survive out of their host environment and have evolved host-specific mechanisms to obtain nutrients and evade the immune response. Relatively few of these host adaptations have been characterized at the molecular level. NTHi utilizes sialic acid as a nutrient and also incorporates this sugar into LOS, which is important in biofilm formation and immune evasion. In the present study, we showed that NTHi has evolved to preferentially utilize the Neu5Ac form of sialic acid. This adaptation is due to the substrate preference of the enzyme CMP-Neu5Ac synthetase, which synthesizes the activated form of Neu5Ac for macromolecule biosynthesis. This adaptation allows NTHi to evade killing by a human antibody response against the nonhuman sialic acid Neu5Gc.


Asunto(s)
Adaptación Fisiológica , Haemophilus influenzae/fisiología , Ácido N-Acetilneuramínico/metabolismo , Membrana Celular/metabolismo , Interacciones Microbiota-Huesped , Humanos , Evasión Inmune , Ácidos Siálicos/metabolismo , Especificidad por Sustrato
18.
Nat Commun ; 10(1): 1952, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31028251

RESUMEN

ABC toxins are pore-forming virulence factors produced by pathogenic bacteria. YenTcA is the pore-forming and membrane binding A subunit of the ABC toxin YenTc, produced by the insect pathogen Yersinia entomophaga. Here we present cryo-EM structures of YenTcA, purified from the native source. The soluble pre-pore structure, determined at an average resolution of 4.4 Å, reveals a pentameric assembly that in contrast to other characterised ABC toxins is formed by two TcA-like proteins (YenA1 and YenA2) and decorated by two endochitinases (Chi1 and Chi2). We also identify conformational changes that accompany membrane pore formation by visualising YenTcA inserted into liposomes. A clear outward rotation of the Chi1 subunits allows for access of the protruding translocation pore to the membrane. Our results highlight structural and functional diversity within the ABC toxin subfamily, explaining how different ABC toxins are capable of recognising diverse hosts.


Asunto(s)
Toxinas Biológicas/metabolismo , Yersinia/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Liposomas/metabolismo , Toxinas Biológicas/genética , Yersinia/genética
19.
Biochem Biophys Res Commun ; 513(1): 287-290, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30954224

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial infections most commonly in immunocompromised, cystic fibrosis (CF) and burns patients. The pilin and Pseudomonas lectins 1 (PA-IL) and 2 (PA-IIL) are known glycan-binding proteins of P. aeruginosa that are involved in adherence to host cells, particularly CF host airways. Recently, new P. aeruginosa surface proteins were identified by reverse vaccinology and tested in vivo as potential vaccine antigens. Three of these, namely PSE17-1, PSE41-5 and PSE54, were screened for glycan binding using glycan arrays displaying glycan structures representative of those found on human cells. Surface plasmon resonance was used to confirm the lectin activity of these proteins, and determined affinities with several host glycans to be in the nanomolar range. PSE17-1 binds hyaluronic acid and sialyl Lewis A and X. PSE41-5 binds terminal ß-linked galactose structures, Lewis and ABO blood group antigens. PSE54 binds to ABO blood group antigens and some terminal ß-linked galactose. All three proteins are novel lectins of P. aeruginosa with potential roles in infection of host cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Lectinas/metabolismo , Polisacáridos/metabolismo , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/fisiología , Adhesión Bacteriana , Humanos , Infecciones por Pseudomonas/prevención & control , Vacunas contra la Infección por Pseudomonas/metabolismo , Factores de Virulencia/metabolismo
20.
Methods Mol Biol ; 1969: 113-121, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30877673

RESUMEN

A growing body of evidence suggests that glycans are important for meningococcal host-pathogen interactions and virulence. The development of glycobiology techniques such as glycan array analysis and surface plasmon resonance (SPR) has increased awareness of the importance of glycans in biological processes and has increased the interest of their study. While these techniques are more routinely used with purified proteins, there is growing interest in their applicability to cell-based studies, to better emulate host-pathogen interactions in vivo. Here we describe the use of glycan array analysis and SPR for the investigation of glycan binding by Neisseria meningitidis cells. Used together, these methods can help identify and characterize N. meningitidis glycointeractions.


Asunto(s)
Glicómica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Interacciones Huésped-Patógeno , Neisseria meningitidis/metabolismo , Polisacáridos/metabolismo , Resonancia por Plasmón de Superficie/métodos , Factores de Virulencia/metabolismo , Cromatografía de Afinidad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA