Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 77: 34-46, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27665712

RESUMEN

The bcl-2 family of survival and death promoting proteins play a key role in regulating cell numbers during nervous system development. Bcl-xL, an anti-apoptotic bcl-2 family member is highly expressed in the developing nervous system. However; the early embryonic lethality of the bcl-x germline null mouse precluded an investigation into its role in nervous system development. To identify the role of bcl-x in spinal cord neurogenesis, we generated a central nervous system-specific bcl-x conditional knockout (BKO) mouse. Apoptotic cell death in the BKO embryo was initially detected at embryonic day 11 (E11) in the ventrolateral aspect of the spinal cord corresponding to the location of motor neurons. Apoptosis reached its peak at E13 having spread across the ventral and into the dorsal spinal cord. By E18, the wave of apoptosis had passed and only a few apoptotic cells were observed. The duration and direction of spread of apoptosis across the spinal cord is consistent with the spatial and temporal sequence of neuronal differentiation. Motor neurons, the first neurons to become post mitotic in the spinal cord, were also the first apoptotic cells. As neurogenesis spread across the spinal cord, later born neuronal populations such as Lim2+ interneurons were also affected. The onset of apoptosis occurred in cells that had exited the cell cycle within the previous 24h and initiated neural differentiation as demonstrated by BrdU birthdating and ßIII tubulin immunohistochemistry. This data demonstrates that spinal cord neurons become Bcl-xL dependent at an early post mitotic stage in developmental neurogenesis.


Asunto(s)
Neurogénesis , Médula Espinal/metabolismo , Proteína bcl-X/metabolismo , Animales , Apoptosis , Ciclo Celular , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Médula Espinal/citología , Médula Espinal/embriología , Proteína bcl-X/genética
2.
Sci Rep ; 5: 10314, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25980808

RESUMEN

Ankylosing spondylitis(AS), a highly heritable complex inflammatory arthritis. Although, a handful of non-HLA risk loci have been identified, capturing the unexplained genetic contribution to AS pathogenesis remains a challenge attributed to additive, pleiotropic and epistatic-interactions at the molecular level. Here, we developed multiple integrated genomic approaches to quantify molecular convergence of non-HLA loci with global immune mediated diseases. We show that non-HLA genes are significantly sensitive to deleterious mutation accumulation in the general population compared with tolerant genes. Human developmental proteomics (prenatal to adult) analysis revealed that proteins encoded by non-HLA AS risk loci are 2-fold more expressed in adult hematopoietic cells.Enrichment analysis revealed AS risk genes overlap with a significant number of immune related pathways (p < 0.0001 to 9.8 × 0(-12)). Protein-protein interaction analysis revealed non-shared AS risk genes are highly clustered seeds that significantly converge (empirical; p < 0.01 to 1.6 × 10(-4)) into networks of global immune mediated disease risk loci. We have also provided initial evidence for the involvement of STAT2/3 in AS pathogenesis. Collectively, these findings highlight molecular insight on non-HLA AS risk loci that are not exclusively connected with overlapping immune mediated diseases; rather a component of common pathophysiological pathways with other immune mediated diseases. This information will be pivotal to fully explain AS pathogenesis and identify new therapeutic targets.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genómica , Inmunidad , Transducción de Señal , Espondilitis Anquilosante/etiología , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Mutación , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Factor de Transcripción STAT2/metabolismo , Factor de Transcripción STAT3/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA