Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Environ Pollut ; 343: 123286, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171425

RESUMEN

The ecological functioning of black soil largely depends on the activities of various groups of microorganisms. However, little is known about how atrazine, a widely used herbicide with known harmful effects on the environment, influences the microbial ecology of black soil, and the extracellular enzymes related to the carbon, nitrogen and phosphorus cycles. Here, we evaluated the change in extracellular enzymes and bacterial community characteristics in black soil after exposure to various concentrations of atrazine. Low concentrations of applied atrazine (10 - 20 mg kg-1) were almost completely degraded after 120 days. At high concentrations (80 - 100 mg kg-1), about 95% of the applied atrazine was degraded over the same period. Additionally, linear fitting of data indicated that the total enzymatic activity index (TEI) and bacterial α-diversity index were negatively correlated with atrazine applied concentration. The atrazine had a greater effect on bacterial beta diversity after 120 days, which differentiated species clusters treated with low and high atrazine concentrations. Soil bacterial community structure and function were affected by atrazine, especially at high atrazine concentrations (80 - 100 mg kg-1). Key microorganisms such as Sphingomonas and Nocardioides were identified as biomarkers for atrazine dissipation. Functional prediction indicated that most metabolic pathways might be involved in atrazine dissipation. Overall, the findings enhance our understanding of the factors driving atrazine degradation in black soil and supports the use of biomarkers as indicators of atrazine dissipation.


Asunto(s)
Atrazina , Herbicidas , Contaminantes del Suelo , Atrazina/análisis , Suelo , Microbiología del Suelo , Herbicidas/análisis , Bacterias/metabolismo , Contaminantes del Suelo/análisis , Biomarcadores/metabolismo , Biodegradación Ambiental
2.
J Hazard Mater ; 460: 132388, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37639796

RESUMEN

Antibiotic resistance genes (ARGs) and human pathogenic bacteria (HPB) in leafy vegetable is a matter of concern as they can be transferred from soil, atmosphere, and foliar sprays, and poses a potential risk to public health. While traditional disinfection technologies are effective in reducing the presence of ARGs and HPB in soil. A new technology, foliar spraying with magnetic biochar/quaternary ammonium salt (MBQ), was demonstrated and applied to the leaf surface. High-throughput quantitative PCR targeting 96 valid ARGs and 16 S rRNA sequencing were used to assess its efficacy in reducing ARGs and HPB. The results showed that spraying MBQ reduced 97.0 ± 0.81% of "high-risk ARGs", associated with seven classes of antibiotic resistance in pakchoi leaves within two weeks. Water washing could further reduce "high-risk ARGs" from pakchoi leaves by 19.8%- 24.6%. The relative abundance of HPB closely related to numerous ARGs was reduced by 15.2 ± 0.23% with MBQ application. Overall, this study identified the potential risk of ARGs from leafy vegetables and clarified the significant implications of MBQ application for human health as it offers a promising strategy for reducing ARGs and HPB in leafy vegetables.


Asunto(s)
Antibacterianos , Cloruro de Sodio , Humanos , Antibacterianos/farmacología , Hojas de la Planta , Suelo , Verduras , Fenómenos Magnéticos
3.
Sci Rep ; 12(1): 5624, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379841

RESUMEN

Wildlife monitoring programs are instrumental for the assessment of species, habitat status, and for the management of factors affecting them. This is particularly important for species found in freshwater ecosystems, such as amphibians, as they have higher estimated extinction rates than terrestrial species. We developed and validated two species-specific environmental DNA (eDNA) protocols and applied them in the field to detect the Hazara Torrent Frog (Allopaa hazarensis) and Murree Hills Frog (Nanorana vicina). Additionally, we compared eDNA surveys with visual encounter surveys and estimated site occupancy. eDNA surveys resulted in higher occurrence probabilities for both A. hazarensis and N. vicina than for visual encounter surveys. Detection probability using eDNA was greater for both species, particularly for A. hazarensis. The top-ranked detection model for visual encounter surveys included effects of both year and temperature on both species, and the top-ranked occupancy model included effects of elevation and year. The top-ranked detection model for eDNA data was the null model, and the top-ranked occupancy model included effects of elevation, year, and wetland type. To our knowledge, this is the first time an eDNA survey has been used to monitor amphibian species in the Himalayan region.


Asunto(s)
ADN Ambiental/análisis , Ranidae/fisiología , Altitud , Animales , ADN Ambiental/genética , Ecosistema , Modelos Biológicos , Pakistán , Ranidae/genética , Especificidad de la Especie
4.
Environ Int ; 157: 106830, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34418848

RESUMEN

The effect of manure application on the distribution and accumulation of antibiotic resistance genes (ARGs) in tissue of root vegetables remains unclear, which poses a bottleneck in assessing the health risks from root vegetables due to application of manure. Towards this goal, experiments were conducted in pots to investigate the distribution and bioaccumulation of ARGs in carrot tissues due to application of pig manure. The 144 ARGs targeting nine types of antibiotics were quantified by high throughput qPCR in the soil and plant samples. The rhizosphere was a hot spot for ARGs enrichment in the manured soil. The abundance, diversity, and bioaccumulation factors of ARGs in the phyllosphere were significantly higher than those of carrot root skin and tuber. Manure application increased bioaccumulation of 12 ARGs and 2 MGEs in carrot tuber with 124 the highest factor. The application of manure increased transfer of 10 ARGs and 3 MGEs from carrot skin to inner tuber by factors of 0.1-11.8. The average gene copy number of ARGs of per gram carrot root was about 4.8 × 104 and 1.1 × 106 in the control and the manured treatment, respectively. Children and adults may co-ingest 2.7 × 107 and 3.2 × 107 of ARGs copies/d from carrots grown with pig manure, using estimated human intake values. However, peeling may reduce the intake of ARGs by 28-91% and of MGEs by 46-59%. In conclusion, the application of pig manure increased the accumulation of ARGs in the skin of carrots, whereas peeling was an effective strategy to reduce the risk.


Asunto(s)
Daucus carota , Estiércol , Animales , Antibacterianos/farmacología , Bioacumulación , Farmacorresistencia Microbiana , Genes Bacterianos , Suelo , Microbiología del Suelo , Porcinos
5.
Sci Total Environ ; 797: 149130, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34311349

RESUMEN

Segmented filamentous bacteria (SFB) and Bacteroides fragilis are known to interact with the host immune response through the aryl hydrocarbon receptor (Ahr). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an environmental toxicant and a high-affinity Ahr ligand has the potential to modify the effect of SFB and B. fragilis. MicroRNAs (miRNA) with their role in regulating gene expression post-transcriptionally, may potentially be used to observe such interactions between SFB, B. fragilis, and TCDD. However, little is known regarding the impact of gut microbial members on miRNA expression or its modulation in the presence of an environmental toxicant. This information is important in understanding toxicant-mediated dysbiosis in gut microbiome and the resulting human health impacts. In this study, C57BL/6 germ-free (GF) mice were colonized with SFB and B. fragilis and administered 30 µg/kg TCDD every 4 d for 28 d and miRNA were measured. Compared to GF mice, colonization with SFB resulted in an increase in up- and down-regulated Ileal miRNAs. TCDD treatment of this group decreased the number of upregulated miRNA and increased the number of down-regulated miRNAs. Association with SFB and B. fragilis together had a similar but less pronounced effect in response to TCDD treatment. TCDD treatment of GF mice had no miRNA expression response. Immune and inflammatory responses and T-cell differentiation were the key functions impacted by these miRNAs. Overall, these results reveal that the host response to toxicants may also depend on the presence of specific gut microbial populations.


Asunto(s)
Microbioma Gastrointestinal , MicroARNs , Dibenzodioxinas Policloradas , Animales , Inmunidad , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/genética
6.
Sci Total Environ ; 757: 143737, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33243511

RESUMEN

The persistence of antibiotic resistance genes (ARGs) under the aerobic vs. anaerobic conditions is unknown, especially under different fertilization. Towards this goal, a microcosm experiment was carried out with chemical fertilized and manured soil under aerobic and anaerobic conditions. High throughput qPCR was used to analyze ARGs with 144 primer sets and sequencing for microorganisms. Completely different dynamics of ARGs were observed in soil under aerobic and anaerobic conditions, regardless of the fertilization type. ARGs had different half-lives, even though they confer resistance to the same type of antibiotics. Aminoglycoside, chloramphenicol, macrolide - lincosamide - streptogramin B (MLSB) and tetracycline resistance genes were significantly accumulated in the aerobic soils. Anaerobic soil possessed a higher harboring capacity for exogenous microorganisms and ARGs than aerobic soil. The interaction between ARGs and mobile genetic elements (MGEs) in manured soil under aerobic condition was more pronounced than the anaerobic condition. These findings unveil that anaerobic soil could play a more positive role in reducing potential risk of ARGs in the farmland environment.


Asunto(s)
Antibacterianos , Suelo , Anaerobiosis , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Microbiología del Suelo
7.
Microb Ecol ; 79(2): 367-382, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31346687

RESUMEN

We examined the bacterial endophyte-enriched root-associated microbiome within rice (Oryza sativa) 55 days after growth in soil with and without urea fertilizer and/or biofertilization with a growth-promotive bacterial strain (Rhizobium leguminosarum bv. trifolii E11). After treatment to deplete rhizosphere/rhizoplane communities, washed roots were macerated and their endophyte-enriched communities were analyzed by 16S ribosomal DNA 454 amplicon pyrosequencing. This analysis clustered 99,990 valid sequence reads into 1105 operational taxonomic units (OTUs) with 97% sequence identity, 133 of which represented a consolidated core assemblage representing 12.04% of the fully detected OTU richness. Taxonomic affiliations indicated Proteobacteria as the most abundant phylum (especially α- and γ-Proteobacteria classes), followed by Firmicutes, Bacteroidetes, Verrucomicrobia, Actinobacteria, and several other phyla. Dominant genera included Rheinheimera, unclassified Rhodospirillaceae, Pseudomonas, Asticcacaulis, Sphingomonas, and Rhizobium. Several OTUs had close taxonomic affiliation to genera of diazotrophic rhizobacteria, including Rhizobium, unclassified Rhizobiales, Azospirillum, Azoarcus, unclassified Rhizobiaceae, Bradyrhizobium, Azonexus, Mesorhizobium, Devosia, Azovibrio, Azospira, Azomonas, and Azotobacter. The endophyte-enriched microbiome was restructured within roots receiving growth-promoting treatments. Compared to the untreated control, endophyte-enriched communities receiving urea and/or biofertilizer treatments were significantly reduced in OTU richness and relative read abundances. Several unique OTUs were enriched in each of the treatment communities. These alterations in structure of root-associated communities suggest dynamic interactions in the host plant microbiome, some of which may influence the well-documented positive synergistic impact of rhizobial biofertilizer inoculation plus low doses of urea-N fertilizer on growth promotion of rice, considered as one of the world's most important food crops.


Asunto(s)
Endófitos/fisiología , Fertilizantes , Microbiota/fisiología , Oryza/microbiología , Raíces de Plantas/microbiología , Urea/metabolismo , Endófitos/efectos de los fármacos , Microbiota/efectos de los fármacos , Oryza/efectos de los fármacos , Oryza/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Rhizobiaceae/química , Rizosfera , Microbiología del Suelo , Urea/administración & dosificación
8.
Sci Total Environ ; 689: 1172-1180, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31466157

RESUMEN

Different long-term fertilization regimes may change indigenous microorganism diversity in the arable soil and thus might influence the persistence and transmission of manure-born antibiotic resistance genes (ARGs). Different manure origins and composting techniques might affect the fate of introduced ARGs in farmland. A four-month microcosm experiment was performed using two soils, which originated from the same field and applied with the same chemical fertilizer or swine manure for 26 years, to investigate the dynamics of ARGs in soil amended with manure or compost from the farm and an agro-technology company. High throughput qPCR and sequencing were applied to quantify ARGs using 144 primer sets and microorganism in soil. Fertilization history had little effect on dynamics of manure-borne ARGs in soil regardless of manure origin or composting. Very different half-lives of ARGs and mobile genetic elements from farm manure and commercial manure were observed in both soils. Composting decreased abundance of most ARGs in manure, but increased the persistence of manure-introduced ARGs in soil irrespective of fertilization history, especially for those from farm manure. These findings help understanding the fate of ARGs in manured soil and may inform techniques to mitigate ARGs transmission.


Asunto(s)
Compostaje , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Estiércol/microbiología , Microbiología del Suelo , Granjas , Fertilizantes , Suelo/química
9.
Methods Mol Biol ; 1918: 21-33, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30580396

RESUMEN

The use of direct nucleic acid amplification of pathogens from food matrices has the potential to reduce time to results over DNA extraction-based approaches as well as traditional culture-based approaches. Here we describe protocols for assay design and experiments for direct amplification of foodborne pathogens in food sample matrices using loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR). The examples provided include the detection Escherichia coli in milk samples and Salmonella in pork meat samples. This protocol includes relevant reagents and methods including obtaining target sequences, assay design, sample processing, and amplification. These methods, though used for specific example matrices, could be applied to many other foodborne pathogens and sample types.


Asunto(s)
Microbiología de Alimentos/métodos , Enfermedades Transmitidas por los Alimentos/microbiología , Técnicas de Amplificación de Ácido Nucleico , Animales , ADN Bacteriano , Escherichia coli/genética , Enfermedades Transmitidas por los Alimentos/diagnóstico , Humanos , Reacción en Cadena de la Polimerasa , Salmonella/genética , Sensibilidad y Especificidad
10.
Environ Sci Technol ; 52(23): 13914-13924, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30427665

RESUMEN

Shotgun sequencing was used for the quantification of taxonomic and functional biomarkers associated with chlorinated solvent bioremediation in 20 groundwater samples (five sites), following bioaugmentation with SDC-9. The analysis determined the abundance of (1) genera associated with chlorinated solvent degradation, (2) reductive dehalogenase (RDases) genes, (3) genes associated with 1,4-dioxane removal, (4) genes associated with aerobic chlorinated solvent degradation, and (5) D. mccartyi genes associated with hydrogen and corrinoid metabolism. The taxonomic analysis revealed numerous genera previously linked to chlorinated solvent degradation, including Dehalococcoides, Desulfitobacterium, and Dehalogenimonas. The functional gene analysis indicated vcrA and tceA from D. mccartyi were the RDases with the highest relative abundance. Reads aligning with both aerobic and anaerobic biomarkers were observed across all sites. Aerobic solvent degradation genes, etnC or etnE, were detected in at least one sample from each site, as were pmoA and mmoX. The most abundant 1,4-dioxane biomarker detected was Methylosinus trichosporium OB3b mmoX. Reads aligning to thmA or Pseudonocardia were not found. The work illustrates the importance of shotgun sequencing to provide a more complete picture of the functional abilities of microbial communities. The approach is advantageous over current methods because an unlimited number of functional genes can be quantified.


Asunto(s)
Chloroflexi , Agua Subterránea , Contaminantes Químicos del Agua , Biodegradación Ambiental , Dioxanos , Solventes
11.
Environ Sci Technol ; 52(22): 13037-13046, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30375866

RESUMEN

Different fertilization and cropping systems may influence short- and long-term residues of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in soil. Soils from dryland (peanut) and paddy (rice) fields, which originated from the same nonagricultural land (forested), were treated with either chemical fertilizer, composted manure, or no fertilizer for 26 years before sampling, which occurred one year after the last applications. ARGs and MGEs were investigated using highly parallel qPCR and high-throughput sequencing. Six of the 11 antibiotics measured by LC-MS/MS were detected in the manure applied soil, but not in the nonmanured soils, indicating their source was from previous manure applications. Compared to the unfertilized control, manure application did not show a large accumulation of ARGs in either cropping system but there were some minor effects of soil management on indigenous ARGs. Paddy soil showed higher accumulation of these ARGs, which corresponded to higher microbial biomass than the dryland soil. Chemical fertilizer increased relative abundance of these ARGs in dryland soil but decreased their relative abundance in paddy soil. These results show how long-term common soil management practices affect the abundance and type of ARGs and MGEs in two very different soil environments, one aerobic and the other primarily anaerobic.


Asunto(s)
Antibacterianos , Suelo , Cromatografía Liquida , Genes Bacterianos , Estiércol , Microbiología del Suelo , Espectrometría de Masas en Tándem
12.
Water Environ Res ; 90(10): 865-884, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30126468

RESUMEN

This review su mmarizes selected publications from 2017 highlighting the occurrence of antimicrobial resistance (AMR) genes in the environment with emphasis on the aquatic environment. The review also covers different treatment technologies being developed for AMR genes as an environmental contaminant. The progress made in the area of AMR gene databases and tools is also reviewed. Besides a brief introduction, the content is categorized into three main sections: i) Occurrence of AMR in the Environment, ii) Treatment technologies for AMR, and iii) AMR databases and tools.


Asunto(s)
Antiinfecciosos/farmacología , Resistencia a Medicamentos/genética , Ambiente , Organismos Acuáticos/microbiología , Bases de Datos Genéticas
13.
FEMS Microbiol Ecol ; 94(9)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30052926

RESUMEN

The high-throughput antibiotic resistance gene (ARG) qPCR array, initially published in 2012, is increasingly used to quantify resistance and mobile determinants in environmental matrices. Continued utility of the array; however, necessitates improvements such as removing or redesigning questionable primer sets, updating targeted genes and coverage of available sequences. Towards this goal, a new primer design tool (EcoFunPrimer) was used to aid in identification of conserved regions of diverse genes. The total number of assays used for diverse genes was reduced from 91 old primer sets to 52 new primer sets, with only a 10% loss in sequence coverage. While the old and new array both contain 384 primer sets, a reduction in old primer sets permitted 147 additional ARGs and mobile genetic elements to be targeted. Results of validating the updated array with a mock community of strains resulted in over 98% of tested instances incurring true positive/negative calls. Common queries related to sensitivity, quantification and conventional data analysis (e.g. Ct cutoff value, and estimated genomic copies without standard curves) were also explored. A combined list of new and previously used primer sets is provided with a recommended set based on redesign of primer sets and results of validation.


Asunto(s)
Cartilla de ADN/genética , Farmacorresistencia Microbiana/genética , Secuencias Repetitivas Esparcidas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Antibacterianos/farmacología
14.
J Microbiol Methods ; 143: 44-49, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29031631

RESUMEN

The remediation of chlorinated solvent contaminated sites frequently involves bioaugmentation with mixed cultures containing Dehalococcoides mccartyi. Their activity is then examined by quantifying reductive dehalogenase (RDase) genes. Recently, we described a rapid, low cost approach, based on loop mediated isothermal amplification (LAMP), which allowed for the visual detection of RDase genes from groundwater. In that study, samples were concentrated (without DNA extraction), incubated in a water bath (avoiding the use of a thermal cycler) and amplification was visualized by the addition of SYBR green (post incubation). Despite having a detection limit less than the threshold recommended for effective remediation, the application of the assay was limited because of the semi-quantitative nature of the data. Moreover, the assay was prone to false positives due to the aerosolization of amplicons. In this study, deoxyuridine triphosphate (dUTP) and uracil DNA glycosylase (UNG) were incorporated into the assay to reduce the probability of false positives. Optimization experiments revealed a UNG concentration of 0.2units per reaction was adequate for degrading trace levels of AUGC based contamination (~1.4×104 gene copies/reaction) without significant changes to the detection limit (~100 gene copies/reaction). Additionally, the optimized assay was used with the most probable number (MPN) method to quantify RDase genes (vcrA and tceA) in multiple groundwater samples from a chlorinated solvent contaminated site. Using this approach, gene concentrations were significantly correlated to concentrations obtained using traditional methods (qPCR and DNA templates). Although the assay underestimated RDase genes concentrations, a strong correlation (R2=0.78 and 0.94) was observed between the two data sets. The regression equations obtained will be valuable to determine gene copies in groundwater using the newly developed, low cost and time saving method.


Asunto(s)
Chloroflexi/enzimología , Dosificación de Gen , Agua Subterránea/microbiología , Hidrolasas/análisis , Técnicas de Amplificación de Ácido Nucleico/métodos , Chloroflexi/genética , Reacciones Falso Positivas , Hidrolasas/genética
15.
PLoS One ; 12(10): e0186462, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29036210

RESUMEN

Loop-mediated isothermal amplification (LAMP) of aquatic invasive species environmental DNA (AIS eDNA) was used for rapid, sensitive, and specific detection of Dreissena sp. relevant to the Great Lakes (USA) basin. The method was validated for two uses including i) direct amplification of eDNA using a hand filtration system and ii) confirmation of the results after DNA extraction using a conventional thermal cycler run at isothermal temperatures. Direct amplification eliminated the need for DNA extraction and purification and allowed detection of target invasive species in grab or concentrated surface water samples, containing both free DNA as well as larger cells and particulates, such as veligers, eggs, or seeds. The direct amplification method validation was conducted using Dreissena polymorpha and Dreissena bugensis and uses up to 1 L grab water samples for high target abundance (e.g., greater than 10 veligers (larval mussels) per L for Dreissena sp.) or 20 L samples concentrated through 35 µm nylon screens for low target abundance, at less than 10 veligers per liter water. Surface water concentrate samples were collected over a period of three years, mostly from inland lakes in Michigan with the help of a network of volunteers. Field samples collected from 318 surface water locations included i) filtered concentrate for direct amplification validation and ii) 1 L grab water sample for eDNA extraction and confirmation. Though the extraction-based protocol was more sensitive (resulting in more positive detections than direct amplification), direct amplification could be used for rapid screening, allowing for quicker action times. For samples collected between May and August, results of eDNA direct amplification were consistent with known presence/absence of selected invasive species. A cross-platform smartphone application was also developed to disseminate the analyzed results to volunteers. Field tests of the direct amplification protocol using a portable device (Gene-Z) showed the method could be used in the field to obtain results within one hr (from sample to result). Overall, the direct amplification has the potential to simplify the eDNA-based monitoring of multiple aquatic invasive species. Additional studies are warranted to establish quantitative correlation between eDNA copy number, veliger, biomass or organismal abundance in the field.


Asunto(s)
ADN/genética , Dreissena/genética , Ambiente , Monitoreo del Ambiente/métodos , Laboratorios , Técnicas de Amplificación de Ácido Nucleico/métodos , Animales , Especies Introducidas , Proyectos Piloto , Factores de Tiempo , Agua
16.
Front Microbiol ; 8: 1896, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29021788

RESUMEN

The gut microbiome is an important modulator of host gene expression, impacting important functions such as the innate immune response. Recent evidence suggests that the inter-domain communication between the gut microbiome and host may in part occur via microRNAs (small, non-coding RNA molecules) which are often differentially expressed in the presence of bacteria and can even be released and taken up by bacteria. The role of microRNAs in microbiome-host communication in intestinal diseases is not fully understood, particularly in diseases impacted by exposure to environmental toxicants. Here, we review the present knowledge in the areas of microbiome and microRNA expression-based communication, microbiome and intestinal disease relationships, and microRNA expression responses to intestinal diseases. We also examine potential links between host microRNA-microbiota communication and exposure to environmental toxicants by reviewing connections between (i) toxicants and microRNA expression, (ii) toxicants and gut diseases, and (iii) toxicants and the gut microbiome. Future multidisciplinary research in this area is needed to uncover these interactions with the potential to impact how gut-microbiome associated diseases [e.g., inflammatory bowel disease (IBD) and many others] are managed.

17.
Front Microbiol ; 8: 1708, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28936204

RESUMEN

Environmental toxicants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AhR), are known to induce host toxicity and structural shifts in the gut microbiota. Key bacterial populations with similar or opposing functional responses to AhR ligand exposure may potentially help regulate expression of genes associated with immune dysfunction. To examine this question and the mechanisms for AhR ligand-induced bacterial shifts, C57BL/6 gnotobiotic mice were colonized with and without segmented filamentous bacteria (SFB) - an immune activator. Mice were also colonized with polysaccharide A producing Bacteroides fragilis - an immune suppressor to serve as a commensal background. Following colonization, mice were administered TCDD (30 µg/kg) every 4 days for 28 days by oral gavage. Quantified with the nCounter® mouse immunology panel, opposing responses in ileal gene expression (e.g., genes associated with T-cell differentiation via the class II major histocompatibility complex) as a result of TCDD dosing and SFB colonization were observed. Genes that responded to TCDD in the presence of SFB did not show a significant response in the absence of SFB, and vice versa. Regulatory T-cells examined in the mesenteric lymph-nodes, spleen, and blood were also less impacted by TCDD in mice colonized with SFB. TCDD-induced shifts in abundance of SFB and B. fragilis compared with previous studies in mice with a traditional gut microbiome. With regard to the mouse model colonized with individual populations, results indicate that TCDD-induced host response was significantly modulated by the presence of SFB in the gut microbiome, providing insight into therapeutic potential between AhR ligands and key commensals.

18.
Water Environ Res ; 89(10): 921-941, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28954648

RESUMEN

This review summarizes selected publications of 2016 with emphasis on occurrence and treatment of antibiotic resistance genes and bacteria in the aquatic environment and wastewater and drinking water treatment plants. The review is conducted with emphasis on fate, modeling, risk assessment and data analysis methodologies for characterizing abundance. After providing a brief introduction, the review is divided into the following four sections: i) Occurrence of AMR in the Environment, ii) Treatment Technologies for AMR, iii) Modeling of Fate, Risk, and Environmental Impact of AMR, and iv) ARG Databases and Pipelines.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Antibacterianos , Bacterias , Monitoreo del Ambiente , Eliminación de Residuos Líquidos , Aguas Residuales/microbiología , Purificación del Agua
19.
Appl Microbiol Biotechnol ; 101(19): 7409-7415, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28812142

RESUMEN

Activated carbon (AC) is an increasingly attractive remediation alternative for the sequestration of dioxins at contaminated sites globally. However, the potential for AC to reduce the bioavailability of dioxins in mammals and the residing gut microbiota has received less attention. This question was partially answered in a recent study examining 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced hallmark toxic responses in mice administered with TCDD sequestered by AC or freely available in corn oil by oral gavage. Results from that study support the use of AC to significantly reduce the bioavailability of TCDD to the host. Herein, we examined the bioavailability of TCDD sequestered to AC on a key murine gut commensal and the influence of AC on the community structure of the gut microbiota. The analysis included qPCR to quantify the expression of segmented filamentous bacteria (SFB) in the mouse ileum, which has responded to TCDD-induced host toxicity in previous studies and community structure via sequencing the 16S ribosomal RNA (rRNA) gene. The expression of SFB 16S rRNA gene and functional genes significantly increased with TCDD administered with corn oil vehicle. Such a response was absent when TCDD was sequestered by AC. In addition, AC appeared to have a minimal influence on murine gut community structure and diversity, affecting only the relative abundance of Lactobacillaceae and two other groups. Results of this study further support the remedial use of AC for eliminating bioavailability of TCDD to host and subsequent influence on the gut microbiome.


Asunto(s)
Carbón Orgánico/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Dibenzodioxinas Policloradas/administración & dosificación , Animales , Disponibilidad Biológica , Carbón Orgánico/farmacocinética , Aceite de Maíz/administración & dosificación , Aceite de Maíz/farmacocinética , Femenino , Íleon/microbiología , Lactobacillaceae/metabolismo , Ratones , Dibenzodioxinas Policloradas/farmacocinética , Dibenzodioxinas Policloradas/toxicidad , ARN Ribosómico 16S/genética , Transcriptoma
20.
J Environ Manage ; 202(Pt 1): 299-310, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28738203

RESUMEN

Following decades of ecologic and economic impacts from a growing list of nonindigenous and invasive species, government and management entities are committing to systematic early- detection monitoring (EDM). This has reinvigorated investment in the science underpinning such monitoring, as well as the need to convey that science in practical terms to those tasked with EDM implementation. Using the context of nonindigenous species in the North American Great Lakes, this article summarizes the current scientific tools and knowledge - including limitations, research needs, and likely future developments - relevant to various aspects of planning and conducting comprehensive EDM. We begin with the scope of the effort, contrasting target-species with broad-spectrum monitoring, reviewing information to support prioritization based on species and locations, and exploring the challenge of moving beyond individual surveys towards a coordinated monitoring network. Next, we discuss survey design, including effort to expend and its allocation over space and time. A section on sample collection and analysis overviews the merits of collecting actual organisms versus shed DNA, reviews the capabilities and limitations of identification by morphology, DNA target markers, or DNA barcoding, and examines best practices for sample handling and data verification. We end with a section addressing the analysis of monitoring data, including methods to evaluate survey performance and characterize and communicate uncertainty. Although the body of science supporting EDM implementation is already substantial, research and information needs (many already actively being addressed) include: better data to support risk assessments that guide choice of taxa and locations to monitor; improved understanding of spatiotemporal scales for sample collection; further development of DNA target markers, reference barcodes, genomic workflows, and synergies between DNA-based and morphology-based taxonomy; and tools and information management systems for better evaluating and communicating survey outcomes and uncertainty.


Asunto(s)
Especies Introducidas , Animales , ADN , Monitoreo del Ambiente , Great Lakes Region , Lagos , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA