Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nanoscale Horiz ; 9(4): 598-608, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38385442

RESUMEN

We report on the synthesis of "clickable" graphene nanoribbons (GNRs) and their application as a versatile interface for electrochemical biosensors. GNRs are successfully deposited on gold-coated working electrodes and serve as a platform for the covalent anchoring of a bioreceptor (i.e., a DNA aptamer), enabling selective and sensitive detection of Interleukin 6 (IL6). Moreover, when applied as the intermediate linker on reduced graphene oxide (rGO)-based field-effect transistors (FETs), the GNRs provide improved robustness compared to conventional aromatic bi-functional linker molecules. GNRs enable an orthogonal and covalent attachment of a recognition unit with a considerably higher probe density than previously established methods. Interestingly, we demonstrate that GNRs introduce photoluminescence (PL) when applied to rGO-based FETs, paving the way toward the simultaneous optical and electronic probing of the attached biointerface.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanotubos de Carbono , Nanotubos de Carbono/química , Grafito/química , Técnicas Biosensibles/métodos
2.
Anal Bioanal Chem ; 416(9): 2247-2259, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38006442

RESUMEN

Centralized laboratories in which analytical processes are automated to enable the analysis of large numbers of samples at relatively low cost are used for analytical testing throughout the world. However, healthcare is changing, partly due to the general recognition that care needs to be more patient-centered and putting the patient at the center of action. One way to achieve this goal is to consider point-of-care testing (PoC) devices as alternative analytical concepts. This requires miniaturization of current analytical concepts and the use of cost-effective diagnostic tools with appropriate sensitivity and specificity. Electrochemical sensors are ideally adapted as they provide robust, low-cost, and miniaturized solutions for the detection of variable analytes, yet lack the high sensitivity comparable to more classical diagnosis approaches. Advances in nanotechnology have opened up a plethora of different nanomaterials to be applied as electrode and/or sensing materials in electrochemical biosensors. The choice of materials significantly influences the sensor's sensitivity, selectivity, and overall performance. A critical review of the state of the art with respect to the development of the utilized materials (between 2019 and 2023) and where the field is heading to are the focus of this article.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Humanos , Ciencia de los Materiales , Técnicas Biosensibles/métodos , Nanotecnología/métodos , Sensibilidad y Especificidad , Técnicas Electroquímicas
3.
ACS Appl Mater Interfaces ; 15(8): 10885-10896, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791086

RESUMEN

"Clickable" organic electrochemical transistors (OECTs) allow the reliable and straightforward functionalization of electronic devices through the well-known click chemistry toolbox. In this work, we study various aspects of the click chemistry-based interface engineering of "clickable" OECTs. First, different channel architectures are investigated, showing that PEDOT-N3 films can properly work as a channel of the transistors. Furthermore, the Cu(I)-catalyzed click reaction of ethynyl-ferrocene is studied under different reaction conditions, endowing the spatial control of the functionalization. The strain-promoted and catalyst-free cycloaddition of a dibenzocyclooctyne-derivatized poly-l-lysine (PLL-DBCO) is also performed on the OECTs and validated by a fiber optic (FO)-SPR setup. The further immobilization of an azido-modified HD22 aptamer yields OECT-based biosensors that are employed for the recognition of thrombin. Finally, their performance is evaluated against previously reported architectures, showing higher density of the immobilized HD22 aptamer, and originating similar KD values and higher maximum signal change upon analyte recognition.


Asunto(s)
Técnicas Biosensibles , Transistores Electrónicos , Electrónica , Lisina , Oligonucleótidos , Técnicas Electroquímicas
4.
JACS Au ; 3(1): 275, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36711097

RESUMEN

[This corrects the article DOI: 10.1021/jacsau.2c00515.].

5.
Macromol Rapid Commun ; 44(16): e2200332, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35689352

RESUMEN

Bioderived polymers are one of many current research areas that promise a sustainable future. Due to their unique properties, the bioderived polymer polydopamine has been in the spotlight over the last decades. Its ability to adhere to virtually any surface and its stability over a wide pH range as well as in several organic solvents make it a suitable candidate for various applications like coatings and biosensors. However, strong light absorption over a broad range of wavelengths and high quenching efficiency limit its uses. Therefore, new bioderived polymers with similar features to polydopamine but without fluorescence quenching properties are highly desirable. Herein, the electropolymerization of a bioderived analog of dopamine, 3-amino-l-tyrosine, is demonstrated. The resulting polymer, poly(amino-l-tyrosine), exhibits several characteristics complementary to or even exceeding those of polydopamine and its analog, polynorepinephrine, rendering poly(amino-l-tyrosine) attractive for the development of sensors and photoactive devices. Cyclic voltammetry, spectro-electrochemistry, and electrochemical quartz crystal microbalance measurements are applied to study the electrodeposition of this material, and the resulting films are compared to polydopamine and polynorepinephrine. Impedance spectroscopy reveals increased ion permeability of poly(amino-l-tyrosine) compared to polydopamine and polynorepinephrine. Moreover, the reduced fluorescence quenching of poly(amino-l-tyrosine) supports its use as coating for biosensors and organic semiconductors.


Asunto(s)
Técnicas Biosensibles , Polímeros , Polímeros/química , Tirosina , Dopamina/química , Tecnicas de Microbalanza del Cristal de Cuarzo
6.
ACS Sens ; 7(2): 504-512, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35134289

RESUMEN

A novel multivariable system, combining a transistor with fiber optic-based surface plasmon resonance spectroscopy with the gate electrode simultaneously acting as the fiber optic sensor surface, is reported. The dual-mode sensor allows for discrimination of mass and charge contributions for binding assays on the same sensor surface. Furthermore, we optimize the sensor geometry by investigating the influence of the fiber area to transistor channel area ratio and distance. We show that larger fiber optic tip diameters are favorable for electronic and optical signals and demonstrate the reversibility of plasmon resonance wavelength shifts after electric field application. As a proof of principle, a layer-by-layer assembly of polyelectrolytes is performed to benchmark the system against multivariable sensing platforms with planar surface plasmon resonance configurations. Furthermore, the biosensing performance is assessed using a thrombin binding assay with surface-immobilized aptamers as receptors, allowing for the detection of medically relevant thrombin concentrations.


Asunto(s)
Técnicas Biosensibles , Fibras Ópticas , Técnicas Biosensibles/métodos , Electrodos , Tecnología de Fibra Óptica/métodos , Trombina/análisis
7.
JACS Au ; 2(12): 2778-2790, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36590273

RESUMEN

Interfacing the surface of an organic semiconductor with biological elements is a central quest when it comes to the development of efficient organic bioelectronic devices. Here, we present the first example of "clickable" organic electrochemical transistors (OECTs). The synthesis and characterization of an azide-derivatized EDOT monomer (azidomethyl-EDOT, EDOT-N3) are reported, as well as its deposition on Au-interdigitated electrodes through electropolymerization to yield PEDOT-N3-OECTs. The electropolymerization protocol allows for a straightforward and reliable tuning of the characteristics of the OECTs, yielding transistors with lower threshold voltages than PEDOT-based state-of-the-art devices and maximum transconductance voltage values close to 0 V, a key feature for the development of efficient organic bioelectronic devices. Subsequently, the azide moieties are employed to click alkyne-bearing molecules such as redox probes and biorecognition elements. The clicking of an alkyne-modified PEG4-biotin allows for the use of the avidin-biotin interactions to efficiently generate bioconstructs with proteins and enzymes. In addition, a dibenzocyclooctyne-modified thrombin-specific HD22 aptamer is clicked on the PEDOT-N3-OECTs, showing the application of the devices toward the development of organic transistors-based biosensors. Finally, the clicked OECTs preserve their electronic features after the different clicking procedures, demonstrating the stability and robustness of the fabricated transistors.

8.
Sensors (Basel) ; 21(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445619

RESUMEN

An electronic biosensor for odors was assembled by immobilizing the silk moth Bombyx mori pheromone binding protein (BmorPBP1) on a reduced graphene oxide surface of a field-effect transistor. At physiological pH, the sensor detects the B. mori pheromones, bombykol and bombykal, with good affinity and specificity. Among the other odorants tested, only eugenol elicited a strong signal, while terpenoids and other odorants (linalool, geraniol, isoamyl acetate, and 2-isobutyl-3-methoxypyrazine) produced only very weak responses. Parallel binding assays were performed with the same protein and the same ligands, using the common fluorescence approach adopted for similar proteins. The results are in good agreement with the sensor's responses: bombykol and bombykal, together with eugenol, proved to be strong ligands, while the other compounds showed only poor affinity. When tested at pH 4, the protein failed to bind bombykol both in solution and when immobilized on the sensor. This result further indicates that the BmorPBP1 retains its full activity when immobilized on a surface, including the conformational change observed in acidic conditions. The good agreement between fluorescence assays and sensor responses suggests that ligand-binding assays in solution can be used to screen mutants of a binding protein when selecting the best form to be immobilized on a biosensor.


Asunto(s)
Técnicas Biosensibles/instrumentación , Proteínas Inmovilizadas/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Odorantes/análisis , Alcadienos/análisis , Técnicas Biosensibles/métodos , Eugenol/análisis , Alcoholes Grasos/análisis , Fluorescencia , Grafito/química , Concentración de Iones de Hidrógeno , Proteínas Inmovilizadas/química , Feromonas/análisis , Feromonas/metabolismo , Soluciones/química
9.
Molecules ; 25(20)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066650

RESUMEN

44Sc has favorable properties for cancer diagnosis using Positron Emission Tomography (PET) making it a promising candidate for application in nuclear medicine. The implementation of its production with existing compact medical cyclotrons would mean the next essential milestone in the development of this radionuclide. While the production and application of 44Sc has been comprehensively investigated, the development of specific targetry and irradiation methods is of paramount importance. As a result, the target was optimized for the 44Ca(p,n)44Sc nuclear reaction using CaO instead of CaCO3, ensuring decrease in target radioactive degassing during irradiation and increased radionuclidic yield. Irradiations were performed at the research cyclotron at the Paul Scherrer Institute (~11 MeV, 50 µA, 90 min) and the medical cyclotron at the University of Bern (~13 MeV, 10 µA, 240 min), with yields varying from 200 MBq to 16 GBq. The development of targetry, chemical separation as well as the practical issues and implications of irradiations, are analyzed and discussed. As a proof-of-concept study, the 44Sc produced at the medical cyclotron was used for a preclinical study using a previously developed albumin-binding prostate-specific membrane antigen (PSMA) ligand. This work demonstrates the feasibility to produce 44Sc with high yields and radionuclidic purity using a medical cyclotron, equipped with a commercial solid target station.


Asunto(s)
Ciclotrones , Tomografía de Emisión de Positrones/métodos , Radioisótopos , Escandio , Albúminas/metabolismo , Animales , Antígenos de Superficie , Compuestos de Calcio/química , Resinas de Intercambio de Catión/química , Diseño de Equipo , Femenino , Glutamato Carboxipeptidasa II , Helio/química , Humanos , Marcaje Isotópico/métodos , Ratones Desnudos , Neoplasias Experimentales/diagnóstico por imagen , Óxidos/química , Prueba de Estudio Conceptual , Radioisótopos/química , Radiofármacos/química , Escandio/química , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Pharmaceutics ; 11(8)2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31434360

RESUMEN

Targeted radionuclide therapy with 177Lu- and 90Y-labeled radioconjugates is a clinically-established treatment modality for metastasized cancer. 47Sc is a therapeutic radionuclide that decays with a half-life of 3.35 days and emits medium-energy ß--particles. In this study, 47Sc was investigated, in combination with a DOTA-folate conjugate, and compared to the therapeutic properties of 177Lu-folate and 90Y-folate, respectively. In vitro, 47Sc-folate demonstrated effective reduction of folate receptor-positive ovarian tumor cell viability similar to 177Lu-folate, but 90Y-folate was more potent at equal activities due to the higher energy of emitted ß--particles. Comparable tumor growth inhibition was observed in mice that obtained the same estimated absorbed tumor dose (~21 Gy) when treated with 47Sc-folate (12.5 MBq), 177Lu-folate (10 MBq), and 90Y-folate (5 MBq), respectively. The treatment resulted in increased median survival of 39, 43, and 41 days, respectively, as compared to 26 days in untreated controls. There were no statistically significant differences among the therapeutic effects observed in treated groups. Histological assessment revealed no severe side effects two weeks after application of the radiofolates, even at double the activity used for therapy. Based on the decay properties and our results, 47Sc is likely to be comparable to 177Lu when employed for targeted radionuclide therapy. It may, therefore, have potential for clinical translation and be of particular interest in tandem with 44Sc or 43Sc as a diagnostic match, enabling the realization of radiotheragnostics in future.

11.
ACS Nano ; 13(6): 6572-6580, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31185159

RESUMEN

Methodologies that involve the use of nanoparticles as "artificial atoms" to rationally build materials in a bottom-up fashion are particularly well-suited to control the matter at the nanoscale. Colloidal synthetic routes allow for an exquisite control over such "artificial atoms" in terms of size, shape, and crystal phase as well as core and surface compositions. We present here a bottom-up approach to produce Pb-Ag-K-S-Te nanocomposites, which is a highly promising system for thermoelectric energy conversion. First, we developed a high-yield and scalable colloidal synthesis route to uniform lead sulfide (PbS) nanorods, whose tips are made of silver sulfide (Ag2S). We then took advantage of the large surface-to-volume ratio to introduce a p-type dopant (K) by replacing native organic ligands with K2Te. Upon thermal consolidation, K2Te-surface modified PbS-Ag2S nanorods yield p-type doped nanocomposites with PbTe and PbS as major phases and Ag2S and Ag2Te as embedded nanoinclusions. Thermoelectric characterization of such consolidated nanosolids showed a high thermoelectric figure-of-merit of 1 at 620 K.

12.
J Am Chem Soc ; 141(20): 8025-8029, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31017419

RESUMEN

The bottom-up assembly of colloidal nanocrystals is a versatile methodology to produce composite nanomaterials with precisely tuned electronic properties. Beyond the synthetic control over crystal domain size, shape, crystal phase, and composition, solution-processed nanocrystals allow exquisite surface engineering. This provides additional means to modulate the nanomaterial characteristics and particularly its electronic transport properties. For instance, inorganic surface ligands can be used to tune the type and concentration of majority carriers or to modify the electronic band structure. Herein, we report the thermoelectric properties of SnTe nanocomposites obtained from the consolidation of surface-engineered SnTe nanocrystals into macroscopic pellets. A CdSe-based ligand is selected to (i) converge the light and heavy bands through partial Cd alloying and (ii) generate CdSe nanoinclusions as a secondary phase within the SnTe matrix, thereby reducing the thermal conductivity. These SnTe-CdSe nanocomposites possess thermoelectric figures of merit of up to 1.3 at 850 K, which is, to the best of our knowledge, the highest thermoelectric figure of merit reported for solution-processed SnTe.

13.
J Labelled Comp Radiopharm ; 62(8): 460-470, 2019 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-30916408

RESUMEN

BACKGROUND: 64 Cu (T1/2  = 12.7 h) is an important radionuclide for diagnostic purposes and used for positron emission tomography (PET). A previous method utilized at Paul Scherrer Institute (PSI) proved to be unreliable and, while a method using anion exchange chromatography is a popular choice worldwide, it was felt a different approach was required to obtain a robust chemical separation method. METHODS: Enriched 64 Ni targets were created by electroplating on gold foil. The targets were irradiated with protons degraded to approximately 11 MeV at PSI's Injector 2 72 MeV research cyclotron and subsequently dissolved in HCl. The resultant solution was loaded onto AG MP-50 cation exchange resin and the 64 Cu separated from its target material and radiocobalt impurities, produced as part of the irradiation process, using various specific mixtures of HCl/acetone solution. The eluted product was evaporated and picked up in dilute HCl (0.05 M). The chemical purity of 64 Cu was determined by radiolabeling experiments at the highest possible molar activities. RESULTS: Reproducible results were obtained, yielding 3.6 to 8.3 GBq 64 Cu of high radionuclidic and radiochemical purity. The product was labeled to NODAGA-RGD, achieved at up to 500 MBq/nmol, indicating the high chemical purity. In a proof-of-concept in vivo study, 64 Cu-NODAGA-RGD was used for PET imaging of a tumor-bearing mouse. CONCLUSION: The chemical separation devised to produce high-quality 64 Cu proved to be robust and reproducible. The concept can be used at medical cyclotrons utilizing a solid target station, such that 64 Cu can be used at hospitals for PET imaging.


Asunto(s)
Radioisótopos de Cobre/aislamiento & purificación , Radioquímica/métodos , Animales , Radioisótopos de Cobre/química , Marcaje Isotópico , Isótopos/química , Ratones , Níquel/química , Tomografía Computarizada por Tomografía de Emisión de Positrones
14.
Appl Radiat Isot ; 145: 205-208, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30641434

RESUMEN

43,44Sc/47Sc is one of the most promising theranostic pairs in nuclear medicine. The co-emission of 1157 keV γ-rays with 99.9% branching ratio by 44Sc and the presence of its metastable state 44 mSc push to favour the adoption of 43Sc for Positron Emission Tomography (PET) diagnostic procedures to lighten the dose to the patient and to the personnel. The ß+ emitter 43Sc can be produced at a medical cyclotron by proton bombardment of an enriched 43Ca or 46Ti oxide target. 43Sc can be also produced by deuteron bombardment of an enriched 42Ca oxide target. Only a few medical cyclotrons currently in operation offer deuteron beams. Some can be adapted to operate both a proton or a deuteron source. To compare these three production routes, an accurate knowledge of the cross-sections is essential. In this paper, we report on the cross-section measurement of the reaction 42Ca(d,n)43Sc performed at the 6 MV HVEC EN-Tandem of the Ion Beam Physics group at ETH in Zürich. A study of the production yield by using commercially available enriched target materials is also presented.


Asunto(s)
Marcaje Isotópico/métodos , Radioisótopos/aislamiento & purificación , Escandio/aislamiento & purificación , Radioisótopos de Calcio/química , Ciclotrones , Deuterio , Humanos , Tomografía de Emisión de Positrones , Protones , Radiofármacos/aislamiento & purificación , Nanomedicina Teranóstica
15.
Mol Pharm ; 15(12): 5556-5564, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30376344

RESUMEN

Recently, we developed an albumin-binding radioligand (177Lu-PSMA-ALB-56), which showed higher PSMA-specific tumor uptake in mice than the previously developed 177Lu-PSMA-617 under the same experimental conditions. Such a radioligand may be of interest also for PET imaging, possibly enabling better visualization of even small metastases at late time-points after injection. The aim of this study was, therefore, to modify PSMA-ALB-56 by exchanging the DOTA chelator with a NODAGA chelator for stable coordination of 64Cu ( T1/2 = 12.7 h; Eß+av = 278 keV). The resulting NODAGA-functionalized PSMA-ALB-89 ligand, and the previously establish DOTA-functionalized PSMA-ALB-56 ligand were labeled with 64Cu and evaluated in vitro and in vivo. Both radioligands showed plasma protein-binding properties in vitro and PSMA-specific uptake in PC-3 PIP cells. Biodistribution studies, performed in tumor-bearing mice, revealed high accumulation of 64Cu-PSMA-ALB-89 in PSMA-positive PC-3 PIP tumor xenografts (25.9 ± 3.41% IA/g at 1 h p.i.), which was further increased at later time-points (65.1 ± 7.82% IA/g at 4 h p.i. and 97.1 ± 7.01% IA/g at 24 h p.i.). High uptake of 64Cu-PSMA-ALB-89 was also seen in the kidneys, however, 64Cu-PSMA-ALB-89 was efficiently excreted over time. Mice injected with 64Cu-PSMA-ALB-56 showed increased accumulation of radioactivity in the liver (25.3 ± 4.20% IA/g) when compared to the liver uptake of 64Cu-PSMA-ALB-89 (4.88 ± 0.21% IA/g, at 4 h p.i.). This was most probably due to in vivo instability of the 64Cu-DOTA complex, which was also the reason for lower tumor uptake (49.7 ± 16.1% IA/g at 4 h p.i. and 28.3 ± 3.59% IA/g at 24 h p.i.). PET/CT imaging studies confirmed these findings and enabled excellent visualization of the PSMA-positive tumor xenografts in vivo after injection of 64Cu-PSMA-ALB-89. These data indicate that 64Cu-PSMA-ALB-89 is favorable over 64Cu-PSMA-ALB-56 with regard to the in vivo stability and tissue distribution profile. Moreover, 64Cu-PSMA-ALB-89 outperformed previously developed 64Cu-labeled PSMA ligands. Further optimization of long-circulating PSMA-targeting PET radioligands will be necessary before translating this concept to the clinics.


Asunto(s)
Antígenos de Superficie/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico por imagen , Radiofármacos/administración & dosificación , Albúminas/química , Animales , Línea Celular Tumoral , Radioisótopos de Cobre/química , Diseño de Fármacos , Estabilidad de Medicamentos , Femenino , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Próstata Resistentes a la Castración/patología , Radiofármacos/química , Radiofármacos/farmacocinética , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Mol Pharm ; 15(11): 4995-5004, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30265552

RESUMEN

Increased vascular permeability is an important hallmark of many diseases, including cancer, cerebral ischemia, and severe inflammatory disorders. In this regard, the noninvasive assessment of pathologically increased vascular permeability in vivo is of great interest. In this study, the potential of albumin- and transthyretin-binding radioligands was evaluated for imaging of vascular hyperpermeability. For this purpose, the bleomycin-induced lung injury model was used as a model of inflammation-associated vascular leakage. The plasma protein-binding ligands, which bind to albumin (DOTA-PPB-01) and transthyretin (DOTA-PPB-03), were radiolabeled and used for nuclear imaging and biodistribution studies. In this regard, 177Lu was employed as a surrogate nuclide for detailed preclinical investigations, including single-photon emission computed tomography (SPECT) studies, whereas 44Sc was proposed as a radionuclide for positron emission tomography (PET), which may be relevant for future clinical translation. Mice were administered with these radioligands 6-9 days after intratracheal instillation of bleomycin or saline. Bleomycin-treated mice developed pronounced lung inflammation with enhanced vascular permeability that was reflected in significantly increased lung size and weight due to edema and infiltration with inflammatory cells. Biodistribution studies revealed significantly higher accumulation of 177Lu-DOTA-PPB-01 in injured lungs as compared to lungs of control animals at all investigated time points (4-48 h p.i.). The best contrast was achieved at late time points (16.1 ± 2.91% IA/g vs 2.03 ± 1.22% IA/g, 48 h p.i.) when the blood activity levels were ∼7.5% IA/g. Injection of 177Lu-DOTA-PPB-03 also resulted in increased lung accumulation in bleomycin-treated mice at all investigated time points (2-8 h p.i.). The pharmacokinetics was significantly faster, however, resulting in good contrast already at 8 h p.i. (4.32 ± 0.85% IA/g vs 1.06 ± 0.10% IA/g) when blood activity levels were ∼2% IA/g. The absolute lung accumulation of 177Lu-DOTA-PPB-03 was significantly lower than that of 177Lu-DOTA-PPB-01. PET/CT scans performed with 44Sc-DOTA-PPB-01 distinguished injured from healthy lungs only at late time points (20 h p.i.), whereas 44Sc-DOTA-PPB-03 already allowed the differentiation at 4 h p.i. due to its faster clearance. The investigated radioligands, 44Sc/177Lu-DOTA-PPB-01 and 44Sc/177Lu-DOTA-PPB-03, hold promise for the visualization of vascular leakage in a variety of pathological conditions. 44Sc would be the radionuclide of choice for clinical application as it can be stably coordinated with a DOTA chelator and enables PET imaging over extended periods.


Asunto(s)
Lesión Pulmonar Aguda/diagnóstico por imagen , Imagen Molecular/métodos , Prealbúmina/metabolismo , Radiofármacos/administración & dosificación , Albúmina Sérica Humana/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Animales , Compuestos Aza/química , Bleomicina/administración & dosificación , Bleomicina/toxicidad , Permeabilidad Capilar , Modelos Animales de Enfermedad , Femenino , Compuestos Heterocíclicos con 1 Anillo/química , Humanos , Pulmón/irrigación sanguínea , Pulmón/diagnóstico por imagen , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Lutecio/administración & dosificación , Lutecio/química , Lutecio/farmacocinética , Ratones , Ratones Endogámicos C57BL , Tomografía de Emisión de Positrones/métodos , Prealbúmina/química , Radioisótopos/administración & dosificación , Radioisótopos/química , Radioisótopos/farmacocinética , Radiofármacos/química , Radiofármacos/farmacocinética , Escandio/administración & dosificación , Escandio/química , Escandio/farmacocinética , Albúmina Sérica Humana/química , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA