Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38464008

RESUMEN

Rhamnose is an essential component of the plant cell wall and is synthesized from uridine diphosphate (UDP)-glucose by the RHAMNOSE1 (RHM1) enzyme. RHM1 localizes to biomolecular condensates in plants, but their identity, formation, and function remain elusive. Combining live imaging, genetics, and biochemical approaches in Arabidopsis and heterologous systems, we show that RHM1 alone is sufficient to form enzymatically active condensates, which we name rhamnosomes. Rhamnosome formation is required for UDP-rhamnose synthesis and organ development. Overall, our study demonstrates a novel role for biomolecular condensation in metabolism and organismal development, and provides further support for how organisms have harnessed this biophysical process to regulate small molecule metabolism.

2.
J Mol Biol ; 433(12): 166837, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33539874

RESUMEN

Protein phase separation has emerged as a novel paradigm to explain the biogenesis of membraneless organelles and other so-called biomolecular condensates. While the implication of this physical phenomenon within cell biology is providing us with novel ways for understanding how cells compartmentalize biochemical reactions and encode function in such liquid-like assemblies, the newfound appreciation of this process also provides immense opportunities for designing and sculpting biological matter. Here, we propose that understanding the cell's instruction manual of phase separation will enable bioengineers to begin creating novel functionalized biological materials and unprecedented tools for synthetic biology. We present FASE as the synthesis of the existing sticker-spacer framework, which explains the physical driving forces underlying phase separation, with quintessential principles of Scandinavian design. FASE serves both as a designer condensates catalogue and construction manual for the aspiring (membraneless) biomolecular architect. Our approach aims to inspire a new generation of bioengineers to rethink phase separation as an opportunity for creating reactive biomaterials with unconventional properties and to encode novel biological function in living systems. Although still in its infancy, several studies highlight how designer condensates have immediate and widespread potential applications in industry and medicine.


Asunto(s)
Química Computacional/métodos , Sustancias Macromoleculares/química , Proteínas/aislamiento & purificación , Modelos Moleculares , Transición de Fase , Biología Sintética
3.
Nanoscale ; 10(36): 17236-17248, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30191237

RESUMEN

Conventional X-ray mammography has low diagnostic sensitivity for women with dense breasts. As a result, alternative contrast-enhanced screening tools such as dual energy mammography (DEM), computed tomography (CT), magnetic resonance imaging (MRI), and near-infrared fluorescence (NIRF) imaging are being used or investigated for these women. However, currently available contrast agents are non-ideal, have safety issues, and each imaging technique requires a different contrast agent. We therefore sought to develop a multimodal contrast agent that is functional for each breast imaging modality to simplify the diagnosis process and address the issues of existing contrast agents. Herein, we present a novel "all-in-one" nanoparticle (AION) multimodal imaging probe that has potent DEM, CT, MRI, and NIRF contrast properties and improved biocompatibility. AION were formed by co-encapsulation of a near-infrared fluorophore (DiR), silver sulfide nanoparticles (Ag2S-NP), and iron oxide nanoparticles (IO-NP) in PEGylated micelles. AION showed negligible cytotoxicity, which was in agreement with its minimal silver ion release profiles. AION generated strong contrast with all imaging modalities as demonstrated in phantom imaging. AION allowed in vivo tumor imaging as evidenced by the increase in contrast after injection. This study indicates the potential of AION as an effective multimodal contrast agent for breast cancer diagnosis with a range of imaging methods.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Medios de Contraste/química , Nanopartículas/química , Animales , Línea Celular , Detección Precoz del Cáncer , Femenino , Compuestos Férricos , Células Hep G2 , Humanos , Imagen por Resonancia Magnética , Mamografía , Ratones Desnudos , Neoplasias Experimentales/diagnóstico por imagen , Fantasmas de Imagen , Compuestos de Plata , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA