RESUMEN
Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25-PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.
Asunto(s)
Dependovirus , Vectores Genéticos , Vacunas contra la Malaria , Malaria Vivax , Plasmodium vivax , Animales , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/administración & dosificación , Plasmodium vivax/inmunología , Plasmodium vivax/genética , Malaria Vivax/prevención & control , Malaria Vivax/transmisión , Malaria Vivax/inmunología , Ratones , Dependovirus/genética , Dependovirus/inmunología , Femenino , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/genética , Anticuerpos Antiprotozoarios/inmunología , Anticuerpos Antiprotozoarios/sangre , Modelos Animales de Enfermedad , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Humanos , Ratones Endogámicos BALB C , Inmunización Secundaria , Eficacia de las VacunasRESUMEN
We previously demonstrated that boosting with adeno-associated virus (AAV) type 1 (AAV1) can induce highly effective and long-lasting protective immune responses against malaria parasites when combined with replication-deficient adenovirus priming in a rodent model. In the present study, we compared the efficacy of two different AAV serotypes, AAV1 and AAV5, as malaria booster vaccines following priming with the attenuated replication-competent vaccinia virus strain LC16m8Δ (m8Δ), which harbors the fusion gene encoding both the pre-erythrocytic stage protein, Plasmodium falciparum circumsporozoite (PfCSP) and the sexual stage protein (Pfs25) in a two-dose heterologous prime-boost immunization regimen. Both regimens, m8Δ/AAV1 and m8Δ/AAV5, induced robust anti-PfCSP and anti-Pfs25 antibodies. To evaluate the protective efficacy, the mice were challenged with sporozoites twice after immunization. At the first sporozoite challenge, m8Δ/AAV5 achieved 100% sterile protection whereas m8Δ/AAV1 achieved 70% protection. However, at the second challenge, 100% of the surviving mice from the first challenge were protected in the m8Δ/AAV1 group whereas only 55.6% of those in the m8Δ/AAV5 group were protected. Regarding the transmission-blocking efficacy, we found that both immunization regimens induced high levels of transmission-reducing activity (>99%) and transmission-blocking activity (>95%). Our data indicate that the AAV5-based multistage malaria vaccine is as effective as the AAV1-based vaccine when administered following an m8Δ-based vaccine. These results suggest that AAV5 could be a viable alternate vaccine vector as a malaria booster vaccine.
Asunto(s)
Vacunas contra la Malaria , Malaria , Animales , Ratones , Virus Vaccinia/genética , Dependovirus/genética , EsporozoítosRESUMEN
The Malaria Vaccine Technology Roadmap 2013 (World Health Organization) aims to develop safe and effective vaccines by 2030 that will offer at least 75% protective efficacy against clinical malaria and reduce parasite transmission. Here, we demonstrate a highly effective multistage vaccine against both the pre-erythrocytic and sexual stages of Plasmodium falciparum that protects and reduces transmission in a murine model. The vaccine is based on a viral-vectored vaccine platform, comprising a highly-attenuated vaccinia virus strain, LC16m8Δ (m8Δ), a genetically stable variant of a licensed and highly effective Japanese smallpox vaccine LC16m8, and an adeno-associated virus (AAV), a viral vector for human gene therapy. The genes encoding P. falciparum circumsporozoite protein (PfCSP) and the ookinete protein P25 (Pfs25) are expressed as a Pfs25-PfCSP fusion protein, and the heterologous m8Δ-prime/AAV-boost immunization regimen in mice provided both 100% protection against PfCSP-transgenic P. berghei sporozoites and up to 100% transmission blocking efficacy, as determined by a direct membrane feeding assay using parasites from P. falciparum-positive, naturally-infected donors from endemic settings. Remarkably, the persistence of vaccine-induced immune responses were over 7 months and additionally provided complete protection against repeated parasite challenge in a murine model. We propose that application of the m8Δ/AAV malaria multistage vaccine platform has the potential to contribute to the landmark goals of the malaria vaccine technology roadmap, to achieve life-long sterile protection and high-level transmission blocking efficacy.
Asunto(s)
Antimaláricos , Vacunas contra la Malaria , Malaria Falciparum , Animales , Anticuerpos Antiprotozoarios , Dependovirus/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Proteínas Protozoarias/genéticaRESUMEN
Viral vectors are a potent vaccine platform for inducing humoral and T-cell immune responses. Among the various viral vectors, replication-competent ones are less commonly used for coronavirus disease 2019 (COVID-19) vaccine development compared with replication-deficient ones. Here, we show the availability of a smallpox vaccine LC16m8Δ (m8Δ) as a replication-competent viral vector for a COVID-19 vaccine. M8Δ is a genetically stable variant of the licensed and highly effective Japanese smallpox vaccine LC16m8. Here, we generated two m8Δ recombinants: one harbouring a gene cassette encoding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein, named m8Δ-SARS2(P7.5-S)-HA; and one encoding the S protein with a highly polybasic motif at the S1/S2 cleavage site, named m8Δ-SARS2(P7.5-SHN)-HA. M8Δ-SARS2(P7.5-S)-HA induced S-specific antibodies in mice that persisted for at least six weeks after a homologous boost immunization. All eight analysed serum samples displayed neutralizing activity against an S-pseudotyped virus at a level similar to that of serum samples from patients with COVID-19, and more than half (5/8) also had neutralizing activity against the Delta/B.1.617.2 variant of concern. Importantly, most serum samples also neutralized the infectious SARS-CoV-2 Wuhan and Delta/B.1.617.2 strains. In contrast, immunization with m8Δ-SARS2(P7.5-SHN)-HA elicited significantly lower antibody titres, and the induced antibodies had less neutralizing activity. Regarding T-cell immunity, both m8Δ recombinants elicited S-specific multifunctional CD8+ and CD4+ T-cell responses even after just a primary immunization. Thus, m8Δ provides an alternative method for developing a novel COVID-19 vaccine.