Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Sci Total Environ ; 904: 166338, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37591377

RESUMEN

Polymerase chain reaction (PCR) is widely applied for the monitoring of pathogenic viruses in water environments. To date, several pretreatments to selectively detect genes from infectious viruses via PCR have been developed. This study was aimed to characterize and validate methods for quantifying active viruses and indicators and to evaluate the proportion of their active fractions in surface water (n = 42). Active E. coli and F-specific RNA phage (FRNAPH) genogroups were quantified using culture assays. In addition to these microbes, norovirus genogroups I (GI) and II, Aichi virus 1, and pepper mild mottle virus (PMMoV) were quantified by (reverse transcription)-quantitative PCR (RT-qPCR) with and without cis-dichlorodiammineplatinum (CDDP) treatment to exclude genes in inactive viruses. CDDP-RT-qPCR showed concentrations and detection frequencies comparable to or higher than culture assays. Consequently, although CDDP-RT-qPCR can suggest the presence of an inactive virus, it can also overestimate the activity of the virus in the environment. Differences between culture and CDDP-RT-qPCR and between CDDP-RT-qPCR and RT-qPCR varied among the viruses. CDDP-RT-qPCR showed a concentration comparable to the culture assay (within 1 log10 difference) in 93 % of positive samples for GI-FRNAPH but in <63 % of positive samples for GII- and GIII-FRNAPHs. GII-NoV was detected from 5 and 30 out of 42 samples via CDDP-RT-qPCR and RT-qPCR, respectively, and was suggested as inactivated by 2.0 log10 or higher in most of the samples. By contrast, concentrations of PMMoV determined by these two assays were not notably different. It is suggested that the operational conditions of wastewater treatment plants around the sites, rather than environmental stresses, affected the microbial inactivation. To better understand the infectivity of viruses in the environment, it is important to investigate them using sensitive detection methods at various sites, including the source of contamination.


Asunto(s)
Enterovirus , Fagos ARN , Virus , Agua , Escherichia coli , Fagos ARN/genética , Genotipo
2.
PLoS One ; 18(7): e0288454, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37450468

RESUMEN

To date, several microbes have been proposed as potential source-specific indicators of fecal pollution. 16S ribosomal RNA gene markers of the Bacteroidales species are the most widely applied due to their predominance in the water environment and source specificity. F-specific bacteriophage (FPH) subgroups, especially FRNA phage genogroups, are also known as potential source-specific viral indicators. Since they can be quantified by both culture-based and molecular assays, they may also be useful as indicators for estimating viral inactivation in the environment. Pepper mild mottle virus (PMMoV) and crAssphage, which are frequently present in human feces, are also potentially useful as human-specific indicators of viral pollution. This study aimed to evaluate the applicability of FPH subgroups, PMMoV, and crAssphage as indicators of source-specific fecal contamination and viral inactivation using 108 surface water samples collected at five sites affected by municipal and pig farm wastewater. The host specificity of the FPH subgroups, PMMoV, and crAssphage was evaluated by principal component analysis (PCA) along with other microbial indicators, such as 16S ribosomal RNA gene markers of the Bacteroidales species. The viabilities (infectivity indices) of FRNA phage genogroups were estimated by comparing their numbers determined by infectivity-based and molecular assays. The PCA explained 58.2% of the total information and classified microbes into three groups: those considered to be associated with pig and human fecal contamination and others. Infective and gene of genogroup IV (GIV)-FRNA phage were assumed to be specific to pig fecal contamination, while the genes of GII-FRNA phage and crAssphage were identified to be specific to human fecal contamination. However, PMMoV, infective GI-FRNA phage, and FDNA phage were suggested to not be specific to human or pig fecal contamination. FRNA phage genogroups, especially the GIV-FRNA phage, were highly inactivated in the warm months in Japan (i.e., July to November). Comparing the infectivity index of several FRNA phage genogroups or other viruses may provide further insight into viral inactivation in the natural environment and by water treatments.


Asunto(s)
Bacteriófagos , Humanos , Animales , Porcinos , Bacteriófagos/genética , Ríos , Japón , Inactivación de Virus , Contaminación del Agua/análisis , Heces , Microbiología del Agua
3.
Sci Total Environ ; 895: 165097, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37356766

RESUMEN

Detection of SARS-CoV-2 RNA in wastewater poses people's concerns regarding the potential risk in water bodies receiving wastewater treatment effluent, despite the infectious risk of SARS-CoV-2 in wastewater being speculated to be low. Unlike well-studied nonenveloped viruses, SARS-CoV-2 in wastewater is present abundantly in both solid and liquid fractions of wastewater. Reduction of SARS-CoV-2 in past studies were likely underestimated, as SARS-CoV-2 in influent wastewater were quantified in either solid or liquid fraction only. The objectives of this study were (i) to clarify the reduction in SARS-CoV-2 RNA during biological nutrient removal and disinfection processes in full-scale WWTPs, considering the SARS-CoV-2 present in both solid and liquid fractions of wastewater, and (ii) to evaluate applicability of pepper mild mottle virus (PMMoV) as a performance indicator for reduction of SARS-CoV-2 in WWTPs. Accordingly, large amount of SARS-CoV-2 RNA were partitioned in the solid fraction of influent wastewater for composite sampling than grab sampling. When SARS-CoV-2 RNA in the both solid and liquid fractions were considered, log reduction values (LRVs) of SARS-CoV-2 during step-feed multistage biological nitrogen removal (SM-BNR) and enhanced biological phosphorus removal (EBPR) processes ranged between>2.1-4.4 log and did not differ significantly from those in conventional activated sludge (CAS). The LRVs of SARS-CoV-2 RNA in disinfection processes by ozonation and chlorination did not differ significantly. PMMoV is a promising performance indicator to secure reduction of SARS-CoV-2 in WWTPs, because of its higher persistence in wastewater treatment processes and abundance at a detectable concentration even in the final effluent after disinfection.


Asunto(s)
COVID-19 , Purificación del Agua , Humanos , Aguas Residuales , SARS-CoV-2 , Desinfección , ARN Viral , Aguas del Alcantarillado , Nutrientes
4.
Food Environ Virol ; 15(1): 8-20, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36592278

RESUMEN

The hollow fiber ultrafiltration (HFUF)-based microbial concentration method is widely applied for monitoring pathogenic viruses and microbial indicators in environmental water samples. However, the HFUF-based method can co-concentrate substances that interfere with downstream molecular processes-nucleic acid extraction, reverse transcription (RT), and PCR. These inhibitory substances are assumed to be hydrophobic and, therefore, expected to be excluded by a simple surfactant treatment before the silica membrane-based RNA extraction process. In this study, the efficacy and limitations of the sodium deoxycholate (SD) treatment were assessed by quantifying a process control and indigenous viruses using 42 surface water samples concentrated with HFUF. With some exceptions, which tended to be seen in samples with high turbidity (> 4.0 NTU), virus recovery by the ultrafiltration method was sufficiently high (> 10%). RNA extraction-RT-quantitative PCR (RT-qPCR) efficiency of the process control was insufficient (10%) for 30 of the 42 HFUF concentrates without any pretreatments, but it was markedly improved for 21 of the 30 inhibitory concentrates by the SD treatment. Detection rates of indigenous viruses were also improved and no substantial loss of viral RNA was observed. The SD treatment was particularly effective in mitigating RT-qPCR inhibition, although it was not effective in improving RNA extraction efficiency. The methodology is simple and easily applied. These findings indicate that SD treatment can be a good alternative to sample dilution, which is widely applied to mitigate the effect of RT-qPCR inhibition, and can be compatible with other countermeasures.


Asunto(s)
Enterovirus , Virus , Ultrafiltración/métodos , Agua , Tensoactivos , ARN , Microbiología del Agua
5.
Sci Total Environ ; 851(Pt 2): 158310, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030862

RESUMEN

The potential risk of SARS-CoV-2 in treated effluent from a wastewater treatment plant (WWTP) is concerned since SARS-CoV-2 is contained in wastewater during the COVID-19 outbreak. However, the removal of SARS-CoV-2 in WWTP has not been well investigated. The objectives of this study were (i) to clarify the removal performance of SARS-CoV-2 during wastewater treatment, (ii) to compare the removal performance of different secondary treatment processes, and (iii) to evaluate applicability of pepper mild mottle of virus (PMMoV) as a performance indicator for the reduction of SARS-CoV-2 RNA in wastewater treatment. Influent wastewater, secondary-treatment effluent (before chlorination), and final effluent (after chlorination) samples were collected from a WWTP from May 28 to September 24, 2020, during the COVID-19 outbreak in Japan. The target WWTP had three parallel treatment systems employing conventional activated sludge (CAS), anaerobic-anoxic -oxic (A2O), and membrane bioreactor (MBR) processes. SARS-CoV-2 in both the liquid and solid fractions of the influent wastewater was concentrated and quantified using RT-qPCR. SARS-CoV-2 in treated effluent was concentrated from 10 L samples to achieve a detection limit as low as 10 copies/L. The log reduction value (LRV) of SARS-CoV-2 was 2.7 ± 0.86 log10 in CAS, 1.6 ± 0.50 log10 in A2O, and 3.6 ± 0.62 log10 in MBR. The lowest LRV observed during the sampling period was 2.8 log10 in MBR, 1.2 log10 in CAS, and 1.0 log10 in A2O process, indicating that the MBR had the most stable reduction performance. PMMoV was found to be a good indicator virus to evaluate reduction performance of SARS-CoV-2 independent of the process configuration because the LRV of PMMoV was significantly lower than that of SARS-CoV-2 in the CAS, A2O and MBR processes.


Asunto(s)
COVID-19 , Purificación del Agua , Humanos , Aguas del Alcantarillado , SARS-CoV-2 , Aguas Residuales , Anaerobiosis , ARN Viral , Reactores Biológicos , Eliminación de Residuos Líquidos
6.
Sci Total Environ ; 823: 153737, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35149069

RESUMEN

Since SARS-CoV-2 RNA in wastewater is often present at low concentration or under detection limit, ensuring the reliability of detection processes using appropriate process controls is essential. The objective of this study was to evaluate applicability and limitations of candidate surrogate viruses as process controls under combinations of different virus concentration and RNA extraction methods. Detection efficiency of SARS-CoV-2 spiked in wastewater was compared with those of candidate surrogate viruses of bacteriophage ϕ6, pepper mild mottle virus (PMMoV), F-specific coliphage (F-phage), and murine norovirus (MNV). After inactivated SARS-CoV-2 and ϕ6 were spiked in two different wastewaters, the viruses in solid and liquid fractions of wastewater were concentrated by centrifuge and polyethylene glycol (PEG) precipitation, respectively. Viral RNA was extracted by using QIAamp Viral RNA Mini Kit and 3 other commercially available extraction kits, then quantified by reverse transcription-quantitative PCR using CDCN1 assay. Regardless of extraction kits, SARS-CoV-2 was consistently detected with good efficiency from both liquid (11-200%) and solid fractions (7.1-93%). Among the candidate process controls, PMMoV was widely detected at good efficiencies from both liquid and solid fractions regardless of selection of RNA extraction kits. F-phage and MNV also showed good detection efficiencies in most combinations of wastewater fractions and RNA extraction kits. An enveloped virus ɸ6 was found often undetected or to have very low detection efficiency (0.1-4.2%) even when SARS-CoV-2 spiked in wastewater was detected with good efficiency. Consequently, PMMoV is widely applicable as process control for detection of SARS-CoV-2 either in liquid fractions concentrated by PEG precipitation, or in solid fractions concentrated by centrifuge.


Asunto(s)
COVID-19 , Virus , Animales , Ratones , ARN Viral , Reproducibilidad de los Resultados , SARS-CoV-2 , Aguas Residuales
7.
Sci Total Environ ; 807(Pt 2): 150722, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34610400

RESUMEN

Polyethylene glycol (PEG) precipitation is one of the conventional methods for virus concentration. This technique has been used to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater. The procedures and seeded surrogate viruses were different among implementers; thus, the reported whole process recovery efficiencies considerably varied among studies. The present study compared five PEG precipitation procedures, with different operational parameters, for the RT-qPCR-based whole process recovery efficiency of murine hepatitis virus (MHV), bacteriophage phi6, and pepper mild mottle virus (PMMoV), and molecular process recovery efficiency of murine norovirus using 34 raw wastewater samples collected in Japan. The five procedures yielded significantly different whole process recovery efficiency of MHV (0.070%-2.6%) and phi6 (0.071%-0.51%). The observed concentration of indigenous PMMoV ranged from 8.9 to 9.7 log (8.2 × 108 to 5.6 × 109) copies/L. Interestingly, PEG precipitation with 2-h incubation outperformed that with overnight incubation partially due to the difference in molecular process recovery efficiency. The recovery load of MHV exhibited a positive correlation (r = 0.70) with that of PMMoV, suggesting that PMMoV is the potential indicator of the recovery efficiency of SARS-CoV-2. In addition, we reviewed 13 published studies and found considerable variability between different studies in the whole process recovery efficiency of enveloped viruses by PEG precipitation. This was due to the differences in operational parameters and surrogate viruses as well as the differences in wastewater quality and bias in the measurement of the seeded load of surrogate viruses, resulting from the use of different analytes and RNA extraction methods. Overall, the operational parameters (e.g., incubation time and pretreatment) should be optimized for PEG precipitation. Co-quantification of PMMoV may allow for the normalization of SARS-CoV-2 RNA concentration by correcting for the differences in whole process recovery efficiency and fecal load among samples.


Asunto(s)
Bacteriófagos , COVID-19 , Virus de la Hepatitis Murina , Animales , Humanos , Ratones , Polietilenglicoles , ARN Viral , SARS-CoV-2 , Tobamovirus , Aguas Residuales
8.
Sci Total Environ ; 780: 146607, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33773350

RESUMEN

Although lake water can be used as a source of drinking water and recreational activities, there is a dearth of research on the occurrence and fate of enteric viruses. Over a period of 14 months at six points in 2014-2015, we conducted monthly monitoring of the virological water quality of a Japanese lake. The lake receives effluent from three surrounding wastewater treatment plants and retains water for about two weeks. These features allowed us to investigate the occurrence and fate of viruses in the lake environment. Human enteric viruses such as noroviruses and their indicators (pepper mild mottle virus and F-specific RNA bacteriophage [FRNAPH] genogroups) were quantified by PCR-based assays. Additionally, FRNAPH genogroups were quantified by infectivity-based assays to estimate the degree of virus inactivation. Pepper mild mottle virus, genogroup II (GII) norovirus, and GI-FRNAPH were identified in relatively high frequencies (positive in >40% out of 64 samples), with concentrations ranging from 1.3 × 101 to 2.9 × 104 copies/L. Human enteric viruses and some indicators were not detected and less prevalent, respectively, after April 2015. Principal component analysis revealed that the virological water quality changed gradually over time, but its differences between the sampling points were not apparent. FRNAPH genogroups were inactivated during the warm season (averaged water temperature of >20 °C) compared to the cool season (averaged water temperature of <20 °C), which may have been due to the more severe environmental stresses such as sunlight and water temperature. This suggests that the infection risk associated with the use of the lake water may have been overestimated by the gene quantification assay during the warm season.


Asunto(s)
Enterovirus , Virus , Purificación del Agua , Humanos , Lagos , Aguas Residuales , Microbiología del Agua
9.
Sci Total Environ ; 758: 143578, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33221007

RESUMEN

The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater samples has been documented in several countries. Wastewater-based epidemiology (WBE) is potentially effective for early warning of a COVID-19 outbreak. In this study, presence of SARS-CoV-2 RNA in wastewater samples was investigated and was compared with the number of the confirmed COVID-19 cases in the study area during COVID-19 outbreak in Japan. In total, 45 influent wastewater samples were collected from five wastewater treatment plants in Ishikawa and Toyama prefectures in Japan. During the study period, the numbers of confirmed COVID-19 cases in these prefectures increased from 0.3 and 0 to >20 per 100,000 people. SARS-CoV-2 ribonucleic acid (RNA) in the samples was detected using several PCR-based assays. Of the 45 samples, 21 were positive for SARS-CoV-2 according to at least one of the three quantitative RT-PCR assays. The detection frequency increased when the number of total confirmed SARS-CoV-2 cases in 100,000 people exceeded 10 in each prefecture; however, SARS-CoV-2 could also be detected at a low frequency even when the number was below 1.0. SARS-CoV-2 in wastewater could be detected in the early stage of the epidemic, even if the number of confirmed cases potentially underestimates the actual numbers of cases. This suggests that WBE approach can potentially act as an early warning of COVID-19 outbreaks in Japan.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brotes de Enfermedades , Humanos , Japón/epidemiología , Aguas Residuales
12.
Water Res ; 174: 115652, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32135428

RESUMEN

Assays based on the polymerase chain reaction (PCR) are widely applied to quantify enteric viruses in aquatic environments to study their fates and potential infection risks. However, inhibitory substances enriched by virus concentration processes can result in inaccurate quantification. This study aimed to find a method for improving virus quantification by mitigating the effects of inhibitory environmental concentrates, using previous knowledge of the properties of the inhibitory substances. Performances of anion exchange resins, gel filtration, and a hydrophobic resin (DAX-8) were comparatively evaluated using poliovirus and its extracted RNA spiked into humic acid solutions. These solutions served as good representatives of the inhibitory environmental concentrates. A sequential treatment using DAX-8 resin and gel filtration produced the most favorable results, i.e., low virus losses that were stable and a reduced inhibitory effect. Furthermore, the sequential treatment was applied to another set of 15 environmental concentrates. Without the sequential treatment, serious underestimation (>4.0 log10 to 1.1 log10) of a molecular process control (murine norovirus) was measured for eight samples. With the treatment, the control was detected with <1.0 log10 underestimation for all samples. The treatment improved the quantification of seven types of indigenous viruses. In summary, the sequential treatment is effective in improving the viral quantification in various of environmental concentrates.


Asunto(s)
Norovirus , Virus , Animales , Cromatografía en Gel , Sustancias Húmicas , Ratones , Reacción en Cadena de la Polimerasa , ARN Viral
13.
Environ Pollut ; 260: 114062, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32041028

RESUMEN

The dissemination of antibiotic resistance (AR) has attracted global attention because of the increasing antibiotic treatment failure it has caused. Through natural transformation, a live bacterium takes up extracellular DNA (exDNA), which facilitates AR dissemination. However, recovery of exDNA from water samples is challenging. In this study, we validated a consecutive ultrafiltration-based protocol to simultaneously recover intracellular DNA (inDNA), dissolved exDNA (Dis_exDNA, dissolved in the bulk water), and adsorbed exDNA (Ads_exDNA, adsorbed to the surfaces of suspended particles). Using hollow fiber ultrafiltration (HFUF), all DNA fractions were concentrated from environmental water samples, after which Dis_exDNA (supernatant) was separated from inDNA and Ads_exDNA (pellets) using centrifugation. Ads_exDNA was washed off from the pellets with proteinase K and sodium phosphate buffer. Dis_exDNA and Ads_exDNA were further concentrated using centrifugal ultrafiltration, from which silica binding was performed. inDNA was extracted from washed pellets with a commercial kit. For inDNA, HFUF showed recovery efficiencies of 96.5 ± 18.5% and 88.0 ± 2.0% for total cells and cultured Escherichia coli, respectively (n = 3). To represent all possible DNA fragments in water environment, exDNA with different lengths (10.0, 4.0, 1.0, and 0.5 kbp) were spiked to test the recovery efficiencies for Dis_exDNA. The whole process achieved 62.2%-62.9% recovery for 10 and 4 kbp exDNA, and 38.8%-44.5% recovery for 1.0 and 0.5 kbp exDNA. Proteinase K treatment enhanced the recovery of Ads_exDNA by 4.0-10.7 times. The protocol was applied to water samples from an urban river in Tokyo, Japan. The abundance of AR genes (ARGs) in inDNA, Dis_exDNA, and Ads_exDNA increased downstream of wastewater treatment plants. ARGs in Ads_exDNA and Dis_exDNA accounted for 1.8%-26.7% and 0.03%-20.9%, respectively, of the total DNA, implying that Ads_exDNA and Dis_exDNA are nonnegligible potential pools for the horizontal transfer of ARGs.


Asunto(s)
Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente/métodos , Genes Bacterianos , Adsorción , Antibacterianos , Japón , Dióxido de Silicio , Tokio , Ultrafiltración , Aguas Residuales
14.
Environ Technol ; 40(19): 2527-2537, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29471753

RESUMEN

Evaluating the reduction of virus load in water reclamation plants is important to ensuring the hygienic safety of the reclaimed water. A virus-spiking test is usually used to estimate virus reduction but is not practicable at large-scale plants. Thus, we evaluated virus reduction by ultrafiltration (UF) plus ultraviolet (UV) irradiation at a large-scale reclamation plant (1000 m3/d) by quantifying indigenous F-specific RNA bacteriophages (FRNAPHs). To detect the infectious FRNAPH, we used both plaque assay and integrated culture-reverse-transcription polymerase chain reaction combined with the most probable number assay, which can detect infectious FRNAPH genotypes. For comparison, we determined reductions of indigenous FRNAPHs and spiked MS2 at a small-scale pilot plant (10 m3/d) at the same time. Reductions by UF were not significantly different among the bacteriophages at pilot plants. This result suggests that indigenous bacteriophages could be used for evaluating virus reduction by UF at large-scale plants. Indigenous Genotype I (GI) FRNAPH showed the highest UV resistance, followed by GII, GIII, and GIV. The resistance of GI-FRNAPH was equivalent to that of spiked MS2. The reduction of the total infectious FRNAPHs determined by plaque assay was affected by the predominant FRNAPH genotype, presumably because of their different UV resistances. Our results reveal that indigenous GI-FRNAPH can be a good alternative indicator to spiked MS2 in view of virus reduction during water reclamation. The reclaimed water from our large-scale reclamation plant could be used for irrigation because the expected reduction (6.3 log10) of indigenous GI-FRNAPH achieved the Title 22 (>5 log10).


Asunto(s)
Fagos ARN , Virus , Genotipo , Ultrafiltración , Aguas Residuales
15.
Sci Rep ; 8(1): 11837, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087387

RESUMEN

Human astroviruses are associated with gastroenteritis and known to contaminate water environments. Three different genetic clades of astroviruses are known to infect humans and each clade consists of diverse strains. This study aimed to determine the occurrence and genetic diversity of astrovirus strains in water samples in different geographical locations, i.e., influent and effluent wastewater samples (n = 24 each) in Arizona, U.S., and groundwater (n = 37) and river water (n = 14) samples collected in the Kathmandu Valley, Nepal, using next-generation amplicon sequencing. Astrovirus strains including rare types (types 6 and 7 classical human astroviruses), emerging type (type 5 VA-astroviruses), and putative recombinants were identified. Feline astrovirus strains were collaterally identified and recombination between human and feline astroviruses was suggested. Classical- and VA-astroviruses seemed to be prevalent during cooler months, while MLB-astroviruses were identified only during warmer months. This study demonstrated the effectiveness of next-generation amplicon sequencing for identification and characterization of genetically diverse astrovirus strains in environmental water.


Asunto(s)
Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mamastrovirus/genética , Recombinación Genética , Aguas Residuales/virología , Animales , Arizona , Gatos , Microbiología Ambiental , Gastroenteritis/virología , Genotipo , Humanos , Mamastrovirus/clasificación , Nepal , Filogenia , Estaciones del Año
16.
Food Environ Virol ; 10(4): 353-364, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30151619

RESUMEN

Certain enteric viruses that are present in the water environment are potential risk factors of waterborne infections. To better understand the impact of viruses in water, both enteric viruses and their potential indicators should be comparatively investigated. In this study, occurrences of GI- and GII-noroviruses (NoVs), sapovirus (SaV), rotavirus (RoV), Aichi virus 1 (AiV-1), enterovirus (EV), and pepper mild mottle virus (PMMoV) were quantitatively determined in surface water samples in Japan. Additionally, the genotype distribution of GI- and GII-NoVs was determined using a next-generation amplicon sequencing. PMMoV was the most abundant virus regardless of season and location, indicating its usefulness as an indicator for the viral contamination of water. Other potential indicators, AiV and EV, were less abundant than GII-NoV. Viruses other than PMMoV showed seasonality, i.e., EV and other viruses (NoVs, SaV, RoV, and AiV-1) became prevalent during summer and winter, respectively. SaV showed a relatively high abundance at a location that was affected by untreated wastewater. Regarding NoV genotypes, GI.1, GI.2, GI.4, GI.5, GI.6, GII.3, GII.4, GII.6, and GII.17 were found from the surface water samples. GII.4 and GII.17 seemed to have contributed to the high abundance of GII-NoV in the samples. Interestingly, GII.17 strains became prevalent in the water samples before becoming prevalent among gastroenteritis patients in Japan. These findings provide further insights into the properties of viruses as contaminants in the water environment.


Asunto(s)
Agua Dulce/virología , Gastroenteritis/virología , Infecciones por Virus ARN/virología , Virus ARN/aislamiento & purificación , Tobamovirus/aislamiento & purificación , Aguas Residuales/virología , Enterovirus/genética , Enterovirus/aislamiento & purificación , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/virología , Gastroenteritis/epidemiología , Genotipo , Humanos , Japón/epidemiología , Infecciones por Virus ARN/epidemiología , Virus ARN/genética , Estaciones del Año , Tobamovirus/genética , Contaminación del Agua
17.
Water Res ; 135: 168-186, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29471200

RESUMEN

Waterborne human enteric viruses, such as noroviruses and adenoviruses, are excreted in the feces of infected individuals and transmitted via the fecal-oral route including contaminated food and water. Since viruses are normally present at low concentrations in aquatic environments, they should be concentrated into smaller volumes prior to downstream molecular biological applications, such as quantitative polymerase chain reaction (qPCR). This review describes recent progress made in the development of concentration and detection methods of human enteric viruses in water, and discusses their applications for providing a better understanding of the prevalence of the viruses in various types of water worldwide. Maximum concentrations of human enteric viruses in water that have been reported in previous studies are summarized to assess viral abundances in aquatic environments. Some descriptions are also available on recent applications of sequencing analyses used to determine the genetic diversity of viral genomes in water samples, including those of novel viruses. Furthermore, the importance and significance of utilizing appropriate process controls during viral analyses are discussed, and three types of process controls are considered: whole process controls, molecular process controls, and (reverse transcription (RT)-)qPCR controls. Although no standards have been established for acceptable values of virus recovery and/or extraction-(RT-)qPCR efficiency, use of at least one of these appropriate control types is highly recommended for more accurate interpretation of observed data.


Asunto(s)
Enterovirus/aislamiento & purificación , Agua Dulce/virología , Reacción en Cadena de la Polimerasa/métodos , Enterovirus/clasificación , Enterovirus/genética , Infecciones por Enterovirus/virología , Heces/virología , Genoma Viral , Humanos
18.
Environ Sci Technol ; 51(23): 13568-13579, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29165998

RESUMEN

Quantitative detection of pathogenic viruses in the environmental water is essential for the assessment of water safety. It is known that some of natural organic substances interfere with virus detection processes, i.e., nucleic acid extraction and reverse transcription-PCR. Such substances are carried over into a sample after virus concentration. In this study, inhibitory substances in coastal water samples were characterized in view of their effects on efficiency of virus detection and property as organic matters. Among 81 samples tested, 77 (95%) showed low recoveries (<10%) of spiked murine norovirus. These recovery rates were correlated with the levels of organic matter present in virus concentrates as measured by ultraviolet absorbance at 254 nm (r = -0.70 - -0.71, p < 0.01). High-performance gel chromatography and fluorescence excitation-emission matrix spectroscopy revealed that organic fractions in the 10-100 kDa size range, which were not dominant in the original samples, and those possessing humic acid-like fluorescence properties were dominant in virus concentrates. The inhibitory effect was more pronounced during summer. Substances originating from seawater seemed to cause a more pronounced effect than those originating from wastewater. Our data highlight the previously unknown characteristics of natural inhibitory substances and are helpful in establishing an effective sample purification technique.


Asunto(s)
Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virus , Aguas Residuales , Purificación del Agua , Animales , Sustancias Húmicas , Ratones , Compuestos Orgánicos , Agua de Mar , Agua
19.
Food Environ Virol ; 9(4): 453-463, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28455611

RESUMEN

The evaluation of virus reduction in water reclamation processes is essential for proper assessment and management of the risk of infection by enteric viruses. Ultrafiltration (UF) with coagulation-sedimentation (CS) is potentially effective for efficient virus removal. However, its performance at removing indigenous viruses has not been evaluated. In this study, we evaluated the reduction of indigenous viruses by UF with and without CS in a pilot-scale water reclamation plant in Okinawa, Japan, by measuring the concentration of viruses using the real-time polymerase chain reaction (qPCR). Aichi virus (AiV) and pepper mild mottle virus (PMMoV) were targeted in addition to the main enteric viruses of concern for risk management, namely, norovirus (NoV) genogroups I and II (GI and GII) and rotavirus (RoV). PMMoV, which is a plant pathogenic virus and is present at high concentrations in water contaminated by human feces, has been suggested as a useful viral indicator. We also investigated the reduction of a spiked model virus (F-specific RNA bacteriophage MS2) to measure the effect of viral inactivation by both qPCR and plaque assay. Efficiencies of removal of NoV GI, NoV GII, RoV, and AiV by UF with and without CS were >0.5 to 3.7 log10, although concentrations were below the detection limit in permeate water. PMMoV was the most prevalent virus in both feed and permeate water following UF, but CS pretreatment could not significantly improve its removal efficiency (mean removal efficiency: UF, 3.1 log10; CS + UF, 3.4 log10; t test, P > 0.05). CS increased the mean removal efficiency of spiked MS2 by only 0.3 log10 by qPCR (t-test, P > 0.05), but by 2.8 log10 by plaque assay (t-test, P < 0.01). This difference indicates that the virus was inactivated during CS + UF. Our results suggest that PMMoV could be used as an indicator of removal efficiency in water reclamation processes, but cultural assay is essential to understanding viral fate.


Asunto(s)
Agua Dulce/química , Agua Dulce/virología , Ultrafiltración/métodos , Inactivación de Virus , Virus/química , Purificación del Agua/métodos , Japón , Fenómenos Fisiológicos de los Virus , Virus/aislamiento & purificación , Microbiología del Agua , Purificación del Agua/instrumentación
20.
Appl Environ Microbiol ; 82(14): 4244-4252, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27208125

RESUMEN

UNLABELLED: F-specific RNA phages (FRNAPHs) are considered potential viral indicators of water pollution due to their occurrence and stability in water environments. However, their suitability as viral indicators is not fully elucidated because the characteristics of FRNAPHs are variable depending on the genotype. In this study, for the characterization of infectious FRNAPH genotypes, integrated culture reverse transcription-PCR coupled with the most probable number approach was applied to surface water samples. Further, to recover low concentrations of FRNAPH genotypes, an FRNAPH recovery method was developed. The novel FRNAPH recovery method using a noncharged microfiltration membrane could effectively recover FRNAPH strains without inactivation, while a method using an electronegative microfiltration membrane resulted in the inactivation of some strains. Infectious FRNAPH genotypes in surface water samples were successfully quantified with an efficiency comparable to that of the conventional plaque assay. Genotype I (GI) and GII FRNAPHs tended to be predominant at locations impacted by treated and untreated municipal wastewater, respectively. The numbers and proportions of infectious FRNAPHs tended to be higher during the winter season when water temperature decreased. IMPORTANCE: Properties of FRNAPHs are highly variable depending on their genotypes. Previous typing methods for FRNAPHs are not quantitative and/or are based on molecular assays, which cannot differentiate infective strains from inactive strains. Due to the reasons mentioned above, the utility of FRNAPHs as viral indicators of water pollution has not been fully validated. In this study, a quantitative genotyping method for infectious FRNAPHs was developed and applied to surface water samples. The method enabled characterization of infectious FRNAPH genotypes in terms of their occurrence and seasonality. Moreover, comparison of the method to a conventional molecular assay (reverse transcription-quantitative PCR) enabled characterization of their stability. Our approach can provide novel findings for further validation of FRNAPHs as viral indicators of water pollution.


Asunto(s)
Genotipo , Fagos ARN/clasificación , Fagos ARN/aislamiento & purificación , Carga Viral/métodos , Microbiología del Agua , Fagos ARN/genética , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA