Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Neurol ; 13: 969047, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212670

RESUMEN

The aim of this study was to assess the effect of Vertigoheel on central vestibular compensation and cognitive deficits in rats subjected to peripheral vestibular loss. Young adult male Long Evans rats were subjected to bilateral vestibular insults through irreversible sequential ototoxic destructions of the vestibular sensory organs. Vestibular syndrome characteristics were monitored at several time points over days and weeks following the sequential insults, using a combination of behavioral assessment paradigms allowing appreciation of patterns of change in static and dynamic deficits, together with spatial navigation, learning, and memory processes. Vertigoheel administered intraperitoneally significantly improved maximum body velocity and not moving time relative to its vehicle control on days 2 and 3 and on day 2, respectively, after unilateral vestibular lesion (UVL). It also significantly improved postural control relative to its vehicle 1 day after UVL. Conversely, Vertigoheel did not display any significant effect vs. vehicle on the severity of the syndrome, nor on the time course of other examined parameters, such as distance moved, mean body velocity, meander, and rearing. Spatial cognition testing using Y- and T-maze and eight-radial arm maze did not show any statistically significant difference between Vertigoheel and vehicle groups. However, Vertigoheel potentially enhanced the speed of learning in sham animals. Evaluating Vertigoheel's effect on thigmotaxis during the open-field video tracking test revealed no significant difference between Vertigoheel and its vehicle control groups suggesting that Vertigoheel does not seem to induce sedative or anxiolytic effects that could negatively affect vestibular and memory function. Present observations reveal that Vertigoheel improves central vestibular compensation following the unilateral peripheral vestibular loss as demonstrated by improvement of specific symptoms.

2.
Biomedicines ; 10(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36140199

RESUMEN

Damage to the peripheral vestibular system is known to generate a syndrome characterized by postural, locomotor, oculomotor, perceptual and cognitive deficits. Current pharmacological therapeutic solutions for these pathologies lack specificity and efficacy. Recently, we demonstrated that apamin, a specific SK channel blocker, significantly reduced posturo-locomotor and oculomotor deficits in the cat and the rat. The aim of the present study was to test the antivertigo potential of compounds belonging to the SK antagonists family, such as Acacetin and Fluoxetine. Young rats were subjected to unilateral ototoxic lesions of the vestibular organ using transtympanic administration of arsanilic acid (TTA) to evoke unilateral vestibular loss (UVL). Vestibular syndrome was monitored using behavioural evaluation allowing appreciation of the evolution of static and dynamic posturo-locomotor deficits. A significant effect of the TTA insult was only found on the distance moved, the mean body velocity and the not moving time. From day 2 to week 2 after TTA, the distance moved and the mean body velocity were significantly decreased, while the not moving time was significantly increased. Acacetin does not evoke any significant change in the vestibular posturo-locomotor parameters' kinetics. Administration of Fluoxetine two weeks before TTA and over three weeks after TTA (preventive group) does not evoke any significant change in the vestibular posturo-locomotor parameters' kinetics. Administration of Fluoxetine from three weeks after TTA significantly delayed the functional recovery. This study demonstrates that Acacetin or Fluoxetine in TTA vestibulo-injured rats does not bring any significant benefit on the posture and locomotor balance deficits.

3.
Front Neurol ; 13: 877319, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693004

RESUMEN

Impaired vestibular function induces disabling symptoms such as postural imbalance, impaired locomotion, vestibulo-ocular reflex alteration, impaired cognitive functions such as spatial disorientation, and vegetative deficits. These symptoms show up in sudden attacks in patients with Ménière or neuritis and may lead to emergency hospitalizations. To date, however, there is no curative solution to these pathologies and the effectiveness of treatments used to reduce symptoms in the management of patients is discussed. Thus, elucidating the biological mechanisms correlated to the expression kinetics of the vestibular syndrome is useful for the development of potential therapeutic candidates with a view to relieving patients and limiting emergency hospitalizations. Recently, a robust antivertigo effect of thyroxine (T4) was demonstrated in a rodent model of impaired vestibular function induced by unilateral surgical section of the vestibular nerve. The aim of the present study was to assess thyroid hormones L-T4 and triiodothyronine (T3) as well as the bioactive thyroid hormone metabolite TRIAC on a rodent model of acute unilateral vestibulopathy more representative of clinical vestibular pathology. To this end, a partial and transient unilateral suppression of peripheral vestibular inputs was induced by an excitotoxic lesion caused by transtympanic injection of kainic acid (TTK) into the inner ear of adult rats. Vestibular syndrome and functional recovery were studied by semi-quantitative and quantitative assessments of relevant posturo-locomotor parameters. In contrast to the effect previously demonstrated in the complete and irreversible vestibular injury model, administration of thyroxine in the TTK rodent model did not display significant antivertigo effect. However, it is noteworthy that administration of thyroxine showed trends to prevent posturo-locomotor alterations. Furthermore, the results of the current study suggested that a single dose of thyroxine is sufficient to induce the same effects on vestibular syndrome observed with sub-chronic administration, and that reducing the T4 dose may more efficiently prevent the appearance of vestibular deficits induced by the excitotoxic type lesion. Finally, comparison of the antivertigo effect of T4 in different vestibulopathy models enables us to determine the therapeutic indication in which thyroxine could be a potential therapeutic candidate.

4.
Eur J Med Chem ; 210: 113059, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33310288

RESUMEN

Beside acetylcholinesterase, butyrylcholinesterase could be considered as a putative target of interest for the symptomatic treatment of Alzheimer's disease (AD). As a result of complexity of AD, no molecule has been approved since 2002. Idalopirdine, a 5-HT6 receptors antagonist, did not show its effectiveness in clinical trial despite its evaluation as adjunct to cholinesterase inhibitors. Pleiotropic molecules, known as multitarget directed ligands (MTDLs) are currently developed to tackle the multifactorial origin of AD. In this context, we have developed a pleiotropic carbamate 7, that behaves as a covalent inhibitor of BuChE (IC50 = 0.97 µM). The latter will deliver after hydrolysis, compound 6, a potent 5-HT6 receptors antagonist (Ki = 11.4 nM) related to idalopirdine. In silico and in vitro evaluation proving our concept were performed completed with first in vivo results that demonstrate great promise in restoring working memory.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Diseño de Fármacos , Profármacos/farmacología , Receptores de Serotonina/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Electrophorus , Humanos , Locomoción/efectos de los fármacos , Masculino , Ratones , Modelos Moleculares , Estructura Molecular , Profármacos/síntesis química , Profármacos/química , Relación Estructura-Actividad
5.
Eur J Med Chem ; 182: 111596, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31419776

RESUMEN

Facing the complexity of Alzheimer's disease (AD), it is now currently admitted that a therapeutic pleiotropic intervention is needed to alter its progression. Among the major hallmarks of the disease, the amyloid pathology and the oxidative stress are closely related. We propose in this study to develop original Multi-Target Directed Ligands (MTDL) able to impact at the same time Aß protein accumulation and toxicity of Reactive Oxygen Species (ROS) in neuronal cells. Such MTDL were obtained by linking on a central piperidine two scaffolds of interest: a typical aminochlorobenzophenone present in numerous 5-HT4R agonists, and diverse antioxidant chemotypes. Interestingly, the most active compound 9g possesses a Ki of 12.7 nM towards 5-HT4R and an antioxidant activity in vitro and in cellulo.


Asunto(s)
Antioxidantes/farmacología , Receptores de Serotonina 5-HT4/metabolismo , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Antioxidantes/síntesis química , Antioxidantes/química , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/metabolismo , Células COS , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ligandos , Estructura Molecular , Picratos/antagonistas & inhibidores , Picratos/metabolismo , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Agonistas del Receptor de Serotonina 5-HT4/síntesis química , Agonistas del Receptor de Serotonina 5-HT4/química , Relación Estructura-Actividad
6.
Molecules ; 24(15)2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31370232

RESUMEN

Alzheimer's disease (AD) is a multifactorial neurodegenerative disease which is still poorly understood. The drugs currently used against AD, mainly acetylcholinesterase inhibitors (AChEI), are considered clinically insufficient and are responsible for deleterious side effects. AChE is, however, currently receiving renewed interest through the discovery of a chaperone role played in the pathogenesis of AD. But AChE could also serve as an activating protein for pleiotropic prodrugs. Indeed, inhibiting central AChE with brain-penetrating designed carbamates which are able to covalently bind to the enzyme and to concomitantly liberate active metabolites in the brain could constitute a clinically more efficient approach which, additionally, is less likely to cause peripheral side effects. We aim in this article to pave the road of this new avenue with an in vitro and in vivo study of pleiotropic prodrugs targeting both the 5-HT4 receptor and AChE, in order to display a neuroprotective activity associated with a sustained restoration of the cholinergic neurotransmission and without the usual peripheral side effects associated with classic AChEI. This plural activity could bring to AD patients effective, relatively safe, symptomatic and disease-modifying therapeutic benefits.


Asunto(s)
Acetilcolinesterasa/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Profármacos/farmacología , Acetilcolinesterasa/química , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/patología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Carbamatos/química , Inhibidores de la Colinesterasa/química , Humanos , Ligandos , Profármacos/química , Receptores de Serotonina 5-HT4/genética
7.
Front Aging Neurosci ; 11: 148, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316368

RESUMEN

This work describes the conception, synthesis, in vitro and in vivo biological evaluation of novel Multi-Target Directed Ligands (MTDL) able to both activate 5-HT4 receptors, block 5-HT6 receptors and inhibit acetylcholinesterase activity (AChE), in order to exert a synergistic anti-amnesic effect, potentially useful in the treatment of Alzheimer's disease (AD). Indeed, both activation of 5-HT4 and blockage of 5-HT6 receptors led to an enhanced acetylcholine release, suggesting it could lead to efficiently restoring the cholinergic neurotransmission deficit observed in AD. Furthermore, 5-HT4 receptor agonists are able to promote the non-amyloidogenic cleavage of the amyloid precursor protein (APP) and to favor the production of the neurotrophic protein sAPPα. Finally, we identified a pleiotropic compound, [1-(4-amino-5-chloro-2-methoxyphenyl)-3-(1-(3-methylbenzyl)piperidin-4-yl)propan-1-one fumaric acid salt (10)], which displayed in vivo an anti-amnesic effect in a model of scopolamine-induced deficit of working memory at a dose of 0.3 mg/kg.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA