Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Mol Omics ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860509

RESUMEN

Eicosanoids are a family of bioactive lipids, including derivatives of the ubiquitous fatty acid arachidonic acid (AA). The intimate involvement of eicosanoids in inflammation motivates the development of predictive in silico models for a systems-level exploration of disease mechanisms, drug development and replacement of animal models. Using an ensemble modelling strategy, we developed a computational model of the AA cascade. This approach allows the visualisation of plausible and thermodynamically feasible predictions, overcoming the limitations of fixed-parameter modelling. A quality scoring method was developed to quantify the accuracy of ensemble predictions relative to experimental data, measuring the overall uncertainty of the process. Monte Carlo ensemble modelling was used to quantify the prediction confidence levels. Model applicability was demonstrated using mass spectrometry mediator lipidomics to measure eicosanoids produced by HaCaT epidermal keratinocytes and 46BR.1N dermal fibroblasts, treated with stimuli (calcium ionophore A23187), (ultraviolet radiation, adenosine triphosphate) and a cyclooxygenase inhibitor (indomethacin). Experimentation and predictions were in good qualitative agreement, demonstrating the ability of the model to be adapted to cell types exhibiting differences in AA release and enzyme concentration profiles. The quantitative agreement between experimental and predicted outputs could be improved by expanding network topology to include additional reactions. Overall, our approach generated an adaptable, tuneable ensemble model of the AA cascade that can be tailored to represent different cell types and demonstrated that the integration of in silico and in vitro methods can facilitate a greater understanding of complex biological networks such as the AA cascade.

2.
Nat Protoc ; 13(11): 2643-2663, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30353176

RESUMEN

Ensemble modeling in molecular systems biology requires the reproducible translation of kinetic parameter data into informative probability distributions (priors), as well as approaches that sample parameters from these distributions without violating the thermodynamic consistency of the overall model. Although a number of pioneering frameworks for ensemble modeling have been published, the issue of generating informative priors has not yet been addressed. Here, we present a protocol that aims to fill this gap. This protocol discusses the collection of parameter values from a diverse range of sources (literature, databases and experiments), assessment of their plausibility, and creation of log-normal probability distributions that can be used as informative priors in ensemble modeling. Furthermore, the protocol enables sampling from the generated distributions while maintaining thermodynamic consistency. Once all parameter values have been retrieved from literature and databases, the protocol can be implemented within ~5-10 min per parameter. The aim of this protocol is to facilitate the design and use of informative distributions for ensemble modeling, especially in fields such as synthetic biology and systems medicine.


Asunto(s)
Modelos Biológicos , Modelos Estadísticos , Biología de Sistemas/estadística & datos numéricos , Animales , Bacterias/genética , Bacterias/metabolismo , Bases de Datos Genéticas , Humanos , Probabilidad , Biología de Sistemas/métodos , Termodinámica , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Incertidumbre
3.
BMC Bioinformatics ; 11: 83, 2010 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-20144236

RESUMEN

BACKGROUND: The development and simulation of dynamic models of terpenoid biosynthesis has yielded a systems perspective that provides new insights into how the structure of this biochemical pathway affects compound synthesis. These insights may eventually help identify reactions that could be experimentally manipulated to amplify terpenoid production. In this study, a dynamic model of the terpenoid biosynthesis pathway was constructed based on the Hybrid Functional Petri Net (HFPN) technique. This technique is a fusion of three other extended Petri net techniques, namely Hybrid Petri Net (HPN), Dynamic Petri Net (HDN) and Functional Petri Net (FPN). RESULTS: The biological data needed to construct the terpenoid metabolic model were gathered from the literature and from biological databases. These data were used as building blocks to create an HFPNe model and to generate parameters that govern the global behaviour of the model. The dynamic model was simulated and validated against known experimental data obtained from extensive literature searches. The model successfully simulated metabolite concentration changes over time (pt) and the observations correlated with known data. Interactions between the intermediates that affect the production of terpenes could be observed through the introduction of inhibitors that established feedback loops within and crosstalk between the pathways. CONCLUSIONS: Although this metabolic model is only preliminary, it will provide a platform for analysing various high-throughput data, and it should lead to a more holistic understanding of terpenoid biosynthesis.


Asunto(s)
Biología Computacional/métodos , Transducción de Señal , Terpenos/metabolismo , Proteoma/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA