Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38586876

RESUMEN

Muscle isometric torque fluctuates according to time-of-day with such variation owed to the influence of circadian molecular clock genes. Satellite cells (SC), the muscle stem cell population, also express molecular clock genes with several contractile related genes oscillating in a diurnal pattern. Currently, limited evidence exists regarding the relationship between SCs and contractility, although long-term SC ablation alters muscle contractile function. Whether there are acute alterations in contractility following SC ablation and with respect to the time-of-day is unknown. We investigated whether short-term SC ablation affected contractile function at two times of day, and whether any such alterations lead to different extents of eccentric contraction-induced injury. Utilizing an established mouse model to deplete SCs, we characterized muscle clock gene expression and ex vivo contractility at two times-of-day (morning 0700 h and afternoon, 1500 h). Morning-SC+ animals demonstrated ~25-30% reductions in tetanic/eccentric specific forces and, after eccentric injury, exhibited ~30% less force-loss and ~50% less dystrophinnegative fibers versus SC- counterparts; no differences were noted between Afternoon groups (Morning-SC+: -5.63 ± 0.61, Morning-SC-: -7.93 ± 0.61; N/cm2; p < 0.05) (Morning-SC+: 32 ± 2.1, Morning-SC-: 64 ± 10.2; dystrophinnegative fibers; p < 0.05). As Ca++ kinetics underpin force-generation, we also evaluated caffeine-induced contracture-force as an indirect marker of Ca++ availability, and found similar force reductions in Morning-SC+ vs SC- mice. We conclude that force-production is reduced in the presence of SCs in the morning but not the afternoon, suggesting that SCs may have a time-of-day influence over contractile-function.

2.
Sports Med ; 54(5): 1097-1119, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38528308

RESUMEN

Exercise perturbs energy homeostasis in skeletal muscle and engages integrated cellular signalling networks to help meet the contraction-induced increases in skeletal muscle energy and oxygen demand. Investigating exercise-associated perturbations in skeletal muscle signalling networks has uncovered novel mechanisms by which exercise stimulates skeletal muscle mitochondrial biogenesis and promotes whole-body health and fitness. While acute exercise regulates a complex network of protein post-translational modifications (e.g. phosphorylation) in skeletal muscle, previous investigations of exercise signalling in human and rodent skeletal muscle have primarily focused on a select group of exercise-regulated protein kinases [i.e. 5' adenosine monophosphate-activated protein kinase (AMPK), protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase (CaMK) and mitogen-activated protein kinase (MAPK)] and only a small subset of their respective protein substrates. Recently, global mass spectrometry-based phosphoproteomic approaches have helped unravel the extensive complexity and interconnection of exercise signalling pathways and kinases beyond this select group and phosphorylation and/or translocation of exercise-regulated mitochondrial and nuclear protein substrates. This review provides an overview of recent advances in our understanding of the molecular events associated with acute endurance exercise-regulated signalling pathways and kinases in skeletal muscle with a focus on phosphorylation. We critically appraise recent evidence highlighting the involvement of mitochondrial and nuclear protein phosphorylation and/or translocation in skeletal muscle adaptive responses to an acute bout of endurance exercise that ultimately stimulate mitochondrial biogenesis and contribute to exercise's wider health and fitness benefits.


Asunto(s)
Ejercicio Físico , Músculo Esquelético , Transducción de Señal , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Transducción de Señal/fisiología , Ejercicio Físico/fisiología , Fosforilación , Animales , Núcleo Celular/metabolismo , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/fisiología , Procesamiento Proteico-Postraduccional
3.
Eur Heart J ; 45(15): 1303-1321, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38461405

RESUMEN

All guidelines worldwide strongly recommend exercise as a pillar of the management of patients affected by lower extremity peripheral artery disease (PAD). Exercise therapy in this setting presents different modalities, and a structured programme provides optimal results. This clinical consensus paper is intended for clinicians to promote and assist for the set-up of comprehensive exercise programmes to best advice in patients with symptomatic chronic PAD. Different exercise training protocols specific for patients with PAD are presented. Data on patient assessment and outcome measures are narratively described based on the current best evidence. The document ends by highlighting disparities in access to supervised exercise programmes across Europe and the series of gaps for evidence requiring further research.


Asunto(s)
Claudicación Intermitente , Enfermedad Arterial Periférica , Humanos , Claudicación Intermitente/terapia , Enfermedad Arterial Periférica/terapia , Terapia por Ejercicio/métodos , Ejercicio Físico , Europa (Continente) , Caminata
4.
Vasa ; 53(2): 87-108, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461401

RESUMEN

All guidelines worldwide strongly recommend exercise as a pillar in the management of patients affected by lower extremity peripheral artery disease (PAD). Exercise therapy in this setting presents different modalities, and a structured programme provides optimal results. This clinical consensus paper is intended to promote and assist the set up of comprehensive exercise programmes and best advice for patients with symptomatic chronic PAD. Different exercise training protocols specific for patients with PAD are presented. Data on patient assessment and outcome measures are described based on the current best evidence. The document ends by highlighting supervised exercise programme access disparities across Europe and the evidence gaps requiring further research.


Asunto(s)
Claudicación Intermitente , Enfermedad Arterial Periférica , Humanos , Claudicación Intermitente/terapia , Enfermedad Arterial Periférica/diagnóstico , Enfermedad Arterial Periférica/terapia , Terapia por Ejercicio/efectos adversos , Terapia por Ejercicio/métodos , Ejercicio Físico , Europa (Continente) , Caminata
5.
Artículo en Inglés | MEDLINE | ID: mdl-38467522

RESUMEN

All guidelines worldwide strongly recommend exercise as a pillar in the management of patients affected by lower extremity peripheral artery disease (PAD). Exercise therapy in this setting presents different modalities, and a structured programme provides optimal results. This clinical consensus paper is intended to promote and assist the set up of comprehensive exercise programmes and best advice for patients with symptomatic chronic PAD. Different exercise training protocols specific for patients with PAD are presented. Data on patient assessment and outcome measures are described based on the current best evidence. The document ends by highlighting supervised exercise programme access disparities across Europe and the evidence gaps requiring further research.

6.
Trends Biochem Sci ; 48(11): 927-936, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37709636

RESUMEN

The ability of skeletal muscle to adapt to repeated contractile stimuli is one of the most intriguing aspects of physiology. The molecular bases underpinning these adaptations involve increased protein activity and/or expression, mediated by an array of pre- and post-transcriptional processes, as well as translational and post-translational control. A longstanding dogma assumes a direct relationship between exercise-induced increases in mRNA levels and subsequent changes in the abundance of the proteins they encode. Drawing on the results of recent studies, we dissect and question the common assumption of a direct relationship between changes in the skeletal muscle transcriptome and proteome induced by repeated muscle contractions (e.g., exercise).


Asunto(s)
Ejercicio Físico , Músculo Esquelético , Músculo Esquelético/metabolismo , Ejercicio Físico/fisiología , Transcriptoma , Contracción Muscular/genética , Proteoma
7.
Am J Physiol Cell Physiol ; 324(6): C1332-C1340, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37184229

RESUMEN

Skeletal muscle comprises approximately 50% of individual body mass and plays vital roles in locomotion, heat production, and whole body metabolic homeostasis. This tissue exhibits a robust diurnal rhythm that is under control of the suprachiasmatic nucleus (SCN) region of the hypothalamus. The SCN acts as a "central" coordinator of circadian rhythms, while cell-autonomous "peripheral" clocks are located within almost all other tissues/organs in the body. Synchronization of the peripheral clocks in muscles (and other tissues) together with the central clock is crucial to ensure temporally coordinated physiology across all organ systems. By virtue of its mass, human skeletal muscle contains the largest collection of peripheral clocks, but within muscle resides a local stem cell population, satellite cells (SCs), which have their own functional molecular clock, independent of the numerous muscle clocks. Skeletal muscle has a daily turnover rate of 1%-2%, so the regenerative capacity of this tissue is important for whole body homeostasis/repair and depends on successful SC myogenic progression (i.e., proliferation, differentiation, and fusion). Emerging evidence suggests that SC-mediated muscle regeneration may, in part, be regulated by molecular clocks involved in SC-specific diurnal transcription. Here we provide insights on molecular clock regulation of muscle regeneration/repair and provide a novel perspective on the interplay between SC-specific molecular clocks, myogenic programs, and cell cycle kinetics that underpin myogenic progression.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Humanos , Ritmo Circadiano/fisiología , Núcleo Supraquiasmático/fisiología , Diferenciación Celular , Homeostasis , Músculo Esquelético/metabolismo , Relojes Circadianos/fisiología
8.
Sci Rep ; 13(1): 4008, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899039

RESUMEN

We investigated the effect of a high-fat diet (HFD) on serum lipid subfractions in men with overweight/obesity and determined whether morning or evening exercise affected these lipid profiles. In a three-armed randomised trial, 24 men consumed an HFD for 11 days. One group of participants did not exercise (n = 8, CONTROL), one group trained at 06:30 h (n = 8, EXam), and one group at 18:30 h (n = 8, EXpm) on days 6-10. We assessed the effects of HFD and exercise training on circulating lipoprotein subclass profiles using NMR spectroscopy. Five days of HFD induced substantial perturbations in fasting lipid subfraction profiles, with changes in 31/100 subfraction variables (adjusted p values [q] < 0.05). Exercise training induced a systematic change in lipid subfraction profiles, with little overall difference between EXam and EXpm. Compared with CONTROL, exercise training reduced serum concentrations of > 20% of fasting lipid subfractions. EXpm reduced fasting cholesterol concentrations in three LDL subfractions by ⁓30%, while EXam only reduced concentration in the largest LDL particles by 19% (all q < 0.05). Lipid subfraction profiles changed markedly after 5 days HFD in men with overweight/obesity. Both morning and evening exercise training impacted subfraction profiles compared with no exercise.


Asunto(s)
Dieta Alta en Grasa , Sobrepeso , Masculino , Humanos , Lipoproteínas , Ejercicio Físico , Obesidad , Lipoproteínas LDL
9.
Diabetes Res Clin Pract ; 197: 110569, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36738837

RESUMEN

AIMS: Examine the effect of 5 d/wk, 9-h time-restricted eating (TRE) protocol on 24-h glycaemic control in adults with type 2 diabetes (T2D). METHODS: Nineteen adults with T2D (10 F/9 M; 50 ± 9 y, HbA1c 7.6% (60 mmol/mol), BMI ∼34 kg/m2) completed a pre-post non-randomised trial comprising of a 2-wk Habitual monitoring period followed by 9-h (10:00-19:00 h) TRE for 4-wk. Glycaemic control was assessed via continuous glucose monitoring (CGM; for mean 24-h glucose concentrations, 24-h total area under the curve (AUC) and glucose variability metrics), with dietary records and physical activity monitoring. Changes in CGM measures, dietary intake and physical activity were assessed with linear mixed-effects models. RESULTS: TRE did not alter dietary energy intake, macronutrient composition or physical activity, but reduced the daily eating window (-2 h 35 min, P < 0.001). Compared to the Habitual period, 24-h glucose concentrations (mean, SD) and AUC decreased in the 4-wk TRE period (mean: -0.7 ± 1.2 mmol/L, P = 0.02; SD: -0.2 ± 0.3 mmol/L, P = 0.01; 24-h AUC: -0.9 ± 1.4 mmol/L⋅h-1 P = 0.01). During TRE, participants spent 10% more time in range (3.9-10.0 mmol/L; P = 0.02) and 10% less time above range (>10.0 mmol/L; P = 0.02). CONCLUSIONS: Adhering 5 d/wk. to 9-h TRE improved glycaemic control in adults with T2D, independent of changes in physical activity or dietary intake. CLINICAL TRIAL REGISTRATION: Australia New Zealand Clinical Trial Registry, ACTRN12618000938202.


Asunto(s)
Diabetes Mellitus Tipo 2 , Adulto , Humanos , Glucemia , Automonitorización de la Glucosa Sanguínea , Control Glucémico , Glucosa
10.
Physiol Rev ; 103(3): 1693-1787, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603158

RESUMEN

Human skeletal muscle demonstrates remarkable plasticity, adapting to numerous external stimuli including the habitual level of contractile loading. Accordingly, muscle function and exercise capacity encompass a broad spectrum, from inactive individuals with low levels of endurance and strength to elite athletes who produce prodigious performances underpinned by pleiotropic training-induced muscular adaptations. Our current understanding of the signal integration, interpretation, and output coordination of the cellular and molecular mechanisms that govern muscle plasticity across this continuum is incomplete. As such, training methods and their application to elite athletes largely rely on a "trial-and-error" approach, with the experience and practices of successful coaches and athletes often providing the bases for "post hoc" scientific enquiry and research. This review provides a synopsis of the morphological and functional changes along with the molecular mechanisms underlying exercise adaptation to endurance- and resistance-based training. These traits are placed in the context of innate genetic and interindividual differences in exercise capacity and performance, with special consideration given to aging athletes. Collectively, we provide a comprehensive overview of skeletal muscle plasticity in response to different modes of exercise and how such adaptations translate from "molecules to medals."


Asunto(s)
Distinciones y Premios , Entrenamiento de Fuerza , Humanos , Atletas , Ejercicio Físico/fisiología , Adaptación Fisiológica , Músculo Esquelético , Resistencia Física
11.
Obesity (Silver Spring) ; 31 Suppl 1: 116-126, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36546330

RESUMEN

OBJECTIVE: This study aimed to assess the impact of time-restricted eating (TRE) on integrated skeletal muscle myofibrillar protein synthesis (MyoPS) rates in males with overweight/obesity. METHODS: A total of 18 healthy males (age 46 ± 5 years; BMI: 30 ± 2 kg/m2 ) completed this exploratory, parallel, randomized dietary intervention after a 3-day lead-in diet. Participants then consumed an isoenergetic diet (protein: ~1.0 g/kg body mass per day) following either TRE (10:00 a.m. to 6:00 p.m.) or an extended eating control (CON; 8:00 a.m. to 8:00 p.m.) protocol for 10 days. Integrated MyoPS rates were measured using deuterated water administration with repeated saliva, blood, and muscle sampling. Secondary measures included continuous glucose monitoring and body composition (dual-energy x-ray absorptiometry). RESULTS: There were no differences in daily integrated MyoPS rates (TRE: 1.28% ± 0.18% per day, CON: 1.26% ± 0.22% per day; p = 0.82) between groups. From continuous glucose monitoring, 24-hour total area under the curve was reduced following TRE (-578 ± 271 vs. CON: 12 ± 272 mmol/L × 24 hours; p = 0.001). Total body mass declined (TRE: -1.6 ± 0.9 and CON: -1.1 ± 0.7 kg; p < 0.001) with no differences between groups (p = 0.22). Lean mass loss was greater following TRE compared with CON (-1.0 ± 0.7 vs. -0.2 ± 0.5 kg, respectively; p = 0.01). CONCLUSION: Consuming food within an 8-hour time-restricted period does not lower daily MyoPS rates when compared with an isoenergetic diet consumed over 12 hours. Future research should investigate whether these results translate to free-living TRE.


Asunto(s)
Automonitorización de la Glucosa Sanguínea , Glucemia , Masculino , Humanos , Adulto , Persona de Mediana Edad , Glucemia/metabolismo , Obesidad/metabolismo , Dieta , Músculo Esquelético/metabolismo
12.
Nat Rev Endocrinol ; 19(2): 76-81, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36450930

RESUMEN

Levels of obesity and overweight are increasing globally, with affected individuals often experiencing health issues and reduced quality of life. The pathogenesis of obesity is complex and multifactorial, and effective solutions have been elusive. In this Viewpoint, experts in the fields of medical therapy, adipocyte biology, exercise and muscle, bariatric surgery, genetics, and public health give their perspectives on current and future progress in addressing the rising prevalence of obesity.


Asunto(s)
Cirugía Bariátrica , Calidad de Vida , Humanos , Obesidad/epidemiología , Obesidad/terapia , Sobrepeso/epidemiología , Sobrepeso/terapia , Ejercicio Físico
13.
Med Sci Sports Exerc ; 55(2): 199-208, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36136603

RESUMEN

INTRODUCTION: DNA methylation regulates exercise-induced changes in the skeletal muscle transcriptome. However, the specificity and the time course responses in the myogenic regulatory factors DNA methylation and mRNA expression after divergent exercise modes are unknown. PURPOSE: This study aimed to compare the time course changes in DNA methylation and mRNA expression for selected myogenic regulatory factors ( MYOD1 , MYF5 , and MYF6 ) immediately after, 4 h after, and 8 h after a single bout of resistance exercise (RE), high-intensity interval exercise (HIIE), and concurrent exercise (CE). METHODS: Nine healthy but untrained males (age, 23.9 ± 2.8 yr; body mass, 70.1 ± 14.9 kg; peak oxygen uptake [V̇O 2peak ], 41.4 ± 5.2 mL·kg -1 ·min -1 ; mean ± SD) performed a counterbalanced, randomized order of RE (4 × 8-12 repetition maximum), HIIE (12 × 1 min sprints at V̇O 2peak running velocity), and CE (RE followed by HIIE). Skeletal muscle biopsies (vastus lateralis) were taken before (REST) immediately (0 h), 4 h, and 8 h after each exercise bout. RESULTS: Compared with REST, MYOD1 , MYF5 , and MYF6 , mean methylation across all CpGs analyzed was reduced after 4 and 8 h in response to all exercise protocols ( P < 0.05). Reduced levels of MYOD1 methylation were observed after HIIE and CE compared with RE ( P < 0.05). Compared with REST, all exercise bouts increased mRNA expression over time ( MYOD1 at 4 and 8 h, and MYF6 at 4 h; P < 0.05). MYF5 mRNA expression was lower after 4 h compared with 0 h and higher at 8 h compared with 4 h ( P < 0.05). CONCLUSIONS: We observed an interrelated but not time-aligned response between the exercise-induced changes in myogenic regulatory factors demethylation and mRNA expression after divergent exercise modes. Despite divergent contractile stimuli, changes in DNA methylation and mRNA expression in skeletal muscle were largely confined to the late (4-8 h) recovery period and similar between the different exercise challenges.


Asunto(s)
Ejercicio Físico , Factores Reguladores Miogénicos , Masculino , Humanos , Adulto Joven , Adulto , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , ARN Mensajero/metabolismo , Desmetilación
14.
Sleep Med Rev ; 66: 101700, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36272396

RESUMEN

There currently exists a modern epidemic of sleep loss, triggered by the changing demands of our 21st century lifestyle that embrace 'round-the-clock' remote working hours, access to energy-dense food, prolonged periods of inactivity, and on-line social activities. Disturbances to sleep patterns impart widespread and adverse effects on numerous cells, tissues, and organs. Insufficient sleep causes circadian misalignment in humans, including perturbed peripheral clocks, leading to disrupted skeletal muscle and liver metabolism, and whole-body energy homeostasis. Fragmented or insufficient sleep also perturbs the hormonal milieu, shifting it towards a catabolic state, resulting in reduced rates of skeletal muscle protein synthesis. The interaction between disrupted sleep and skeletal muscle metabolic health is complex, with the mechanisms underpinning sleep-related disturbances on this tissue often multifaceted. Strategies to promote sufficient sleep duration combined with the appropriate timing of meals and physical activity to maintain circadian rhythmicity are important to mitigate the adverse effects of inadequate sleep on whole-body and skeletal muscle metabolic health. This review summarises the complex relationship between sleep, circadian biology, and skeletal muscle, and discusses the effectiveness of several strategies to mitigate the negative effects of disturbed sleep or circadian rhythms on skeletal muscle health.


Asunto(s)
Ejercicio Físico , Privación de Sueño , Humanos , Músculo Esquelético
15.
Cell Metab ; 34(10): 1457-1471.e4, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36198292

RESUMEN

Diet modification and exercise training are primary lifestyle strategies for obesity management, but poor adherence rates limit their effectiveness. Time-restricted eating (TRE) and high-intensity interval training (HIIT) improve cardiometabolic health in at-risk individuals, but whether these two interventions combined induce superior improvements in glycemic control than each individual intervention is not known. In this four-armed randomized controlled trial (ClinicalTrials.gov NCT04019860), we determined the isolated and combined effects of 7 weeks of TRE (≤10-h daily eating window, with ad libitum energy intake) and HIIT (three exercise sessions per week), compared with a non-intervention control group, on glycemic control and secondary cardiometabolic outcomes in 131 women (36.2 ± 6.2 years) with overweight/obesity. There were no statistically significant effects after isolated TRE, HIIT, or a combination (TREHIIT) on glucose area under the curve during an oral glucose tolerance test (the primary outcome) compared with the control group (TRE, -26.3 mmol/L; 95% confidence interval [CI], -82.3 to 29.7, p = 0.36; HIIT, -53.8 mmol/L; 95% CI, -109.2 to 1.6, p = 0.057; TREHIIT, -41.3 mmol/L; 95% CI, -96.4 to 13.8, p = 0.14). However, TREHIIT improved HbA1c and induced superior reductions in total and visceral fat mass compared with TRE and HIIT alone. High participant adherence rates suggest that TRE, HIIT, and a combination thereof may be realistic diet-exercise strategies for improving markers of metabolic health in women at risk of cardiometabolic disease.


Asunto(s)
Enfermedades Cardiovasculares , Sobrepeso , Composición Corporal , Enfermedades Cardiovasculares/complicaciones , Ejercicio Físico , Femenino , Glucosa , Hemoglobina Glucada/metabolismo , Humanos , Obesidad/metabolismo , Sobrepeso/complicaciones , Sobrepeso/terapia
17.
Front Mol Biosci ; 9: 957549, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090035

RESUMEN

Introduction: The AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis that becomes activated by exercise and binds glycogen, an important energy store required to meet exercise-induced energy demands. Disruption of AMPK-glycogen interactions in mice reduces exercise capacity and impairs whole-body metabolism. However, the mechanisms underlying these phenotypic effects at rest and following exercise are unknown. Furthermore, the plasma metabolite responses to an acute exercise challenge in mice remain largely uncharacterized. Methods: Plasma samples were collected from wild type (WT) and AMPK double knock-in (DKI) mice with disrupted AMPK-glycogen binding at rest and following 30-min submaximal treadmill running. An untargeted metabolomics approach was utilized to determine the breadth of plasma metabolite changes occurring in response to acute exercise and the effects of disrupting AMPK-glycogen binding. Results: Relative to WT mice, DKI mice had reduced maximal running speed (p < 0.0001) concomitant with increased body mass (p < 0.01) and adiposity (p < 0.001). A total of 83 plasma metabolites were identified/annotated, with 17 metabolites significantly different (p < 0.05; FDR<0.1) in exercised (↑6; ↓11) versus rested mice, including amino acids, acylcarnitines and steroid hormones. Pantothenic acid was reduced in DKI mice versus WT. Distinct plasma metabolite profiles were observed between the rest and exercise conditions and between WT and DKI mice at rest, while metabolite profiles of both genotypes converged following exercise. These differences in metabolite profiles were primarily explained by exercise-associated increases in acylcarnitines and steroid hormones as well as decreases in amino acids and derivatives following exercise. DKI plasma showed greater decreases in amino acids following exercise versus WT. Conclusion: This is the first study to map mouse plasma metabolomic changes following a bout of acute exercise in WT mice and the effects of disrupting AMPK-glycogen interactions in DKI mice. Untargeted metabolomics revealed alterations in metabolite profiles between rested and exercised mice in both genotypes, and between genotypes at rest. This study has uncovered known and previously unreported plasma metabolite responses to acute exercise in WT mice, as well as greater decreases in amino acids following exercise in DKI plasma. Reduced pantothenic acid levels may contribute to differences in fuel utilization in DKI mice.

18.
Front Physiol ; 13: 859246, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392375

RESUMEN

The AMP-activated protein kinase (AMPK) is a central regulator of cellular energy balance and metabolism and binds glycogen, the primary storage form of glucose in liver and skeletal muscle. The effects of disrupting whole-body AMPK-glycogen interactions on exercise capacity and substrate utilization during exercise in vivo remain unknown. We used male whole-body AMPK double knock-in (DKI) mice with chronic disruption of AMPK-glycogen binding to determine the effects of DKI mutation on exercise capacity, patterns of whole-body substrate utilization, and tissue metabolism during exercise. Maximal treadmill running speed and whole-body energy utilization during submaximal running were determined in wild type (WT) and DKI mice. Liver and skeletal muscle glycogen and skeletal muscle AMPK α and ß2 subunit content and signaling were assessed in rested and maximally exercised WT and DKI mice. Despite a reduced maximal running speed and exercise time, DKI mice utilized similar absolute amounts of liver and skeletal muscle glycogen compared to WT. DKI skeletal muscle displayed reduced AMPK α and ß2 content versus WT, but intact relative AMPK phosphorylation and downstream signaling at rest and following exercise. During submaximal running, DKI mice displayed an increased respiratory exchange ratio, indicative of greater reliance on carbohydrate-based fuels. In summary, whole-body disruption of AMPK-glycogen interactions reduces maximal running capacity and skeletal muscle AMPK α and ß2 content and is associated with increased skeletal muscle glycogen utilization. These findings highlight potential unappreciated roles for AMPK in regulating tissue glycogen dynamics and expand AMPK's known roles in exercise and metabolism.

19.
Adv Nutr ; 13(3): 699-711, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35170718

RESUMEN

Time-restricted eating (TRE) is a popular dietary strategy that emphasizes the timing of meals in alignment with diurnal circadian rhythms, permitting ad libitum energy intake during a restricted (∼8-10 h) eating window each day. Unlike energy-restricted diets or intermittent fasting interventions that focus on weight loss, many of the health-related benefits of TRE are independent of reductions in body weight. However, TRE research to date has largely ignored what food is consumed (i.e., macronutrient composition and energy density), overlooking a plethora of past epidemiological and interventional dietary research. To determine some of the potential mechanisms underpinning the benefits of TRE on metabolic health, future studies need to increase the rigor of dietary data collected, assessed, and reported to ensure a consistent and standardized approach in TRE research. This Perspective article provides an overview of studies investigating TRE interventions in humans and considers dietary intake (both what and when food is eaten) and their impact on selected health outcomes (i.e., weight loss, glycemic control). Integrating existing dietary knowledge about what food is eaten with our recent understanding on when food should be consumed is essential to optimize the impact of dietary strategies aimed at improving metabolic health outcomes.


Asunto(s)
Ingestión de Energía , Ayuno , Peso Corporal , Ingestión de Alimentos , Humanos , Pérdida de Peso
20.
Med Sci Sports Exerc ; 54(5): 717-727, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35019901

RESUMEN

PURPOSE: Exercise training is recommended to improve cardiometabolic health and fertility in women with polycystic ovary syndrome (PCOS), yet there are few randomized controlled trials on the effects of different exercise protocols on clinical reproductive outcomes. Our aim was to determine the effect of high-intensity interval training (HIT) on menstrual frequency, as a proxy of reproductive function, in women with PCOS. METHODS: The IMPROV-IT study was a two-center randomized controlled trial undertaken in Norway and Australia. Women with PCOS were eligible for inclusion. After stratification for body mass index <27 or ≥27 kg·m-2 and study center, participants were randomly allocated (1:1:1) to high-volume HIT (HV-HIT), low-volume HIT (LV-HIT), or a control group. Measurements were assessed at baseline, after the 16-wk exercise intervention, and at 12-month follow-up. The primary outcome was menstrual frequency after 12 months. Secondary outcomes included markers of cardiometabolic and reproductive health, quality of life, and adherence to and enjoyment of HIT. RESULTS: We randomly allocated 64 participants to the HV-HIT (n = 20), LV-HIT (n = 21), or control group (n = 23). There were no differences in menstrual frequency at 12 months between the LV-HIT and control groups (frequency ratio, 1.02; 95% confidence interval [CI], 0.73-1.42), the HV-HIT and control groups (frequency ratio, 0.93; 95% CI, 0.67-1.29), or the LV-HIT and HV-HIT groups (frequency ratio, 1.09; 95% CI, 0.77-1.56). Menstrual frequency increased in all groups from baseline to 12 months. More participants became pregnant in the LV-HIT group (n = 5) than in the control group (n = 0, P = 0.02). CONCLUSIONS: A semisupervised HIT intervention did not increase menstrual frequency in women with PCOS.Clinical Trial Registration Number:ClinicalTrials.gov (NCT02419482).


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Síndrome del Ovario Poliquístico , Femenino , Humanos , Ciclo Menstrual/fisiología , Síndrome del Ovario Poliquístico/fisiopatología , Síndrome del Ovario Poliquístico/terapia , Embarazo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA