Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Br J Cancer ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003372

RESUMEN

BACKGROUND: Large non-apoptotic vesicles released from the plasma membrane protrusions are classified as large-EVs (LEVs). However, the triggers of LEV secretion and their functions in tumors remain unknown. METHODS: Coculture system of cancer cells, peritoneal mesothelial cells (PMCs), and macrophages (MΦs) was conducted to observe cell-cell contact-mediated LEV secretion. Lineage tracing of PMCs was performed using Wt1CreERT2-tdTnu mice to explore the effects of LEVs on PMCs in vivo, and lymphangiogenesis was assessed by qRT-PCR and flow-cytometry. RESULTS: In peritoneal dissemination, cancer cells expressing Ephrin-B (EFNB) secreted LEVs upon the contact with PMCs expressing ephrin type-B (EphB) receptors, which degraded mesothelial barrier by augmenting mesothelial-mesenchymal transition. LEVs were incorporated in subpleural MΦs, and these MΦs transdifferentiated into lymphatic endothelial cells (LEC) and integrated into the lymphatic vessels. LEC differentiation was also induced in PMCs by interacting with LEV-treated MΦs, which promoted lymphangiogenesis. Mechanistically, activation of RhoA-ROCK pathway through EFNB reverse signaling induced LEV secretion. EFNBs on LEVs activated EphB forward signaling in PMC and MΦs, activating Akt, ERK and TGF-ß1 pathway, which were indispensable for causing MMT and LEC differentiation. LEVs accelerated peritoneal dissemination and lymphatic invasions by cancer cells. Blocking of EFNBs on LEVs using EphB-Fc-fusion protein attenuated these events. CONCLUSIONS: EFNBhigh cancer cells scattered LEVs when they attached to PMCs, which augmented the local reactions of PMC and MΦ (MMT and lymphangiogenesis) and exaggerated peritoneal dissemination.

2.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674500

RESUMEN

JAV1-associated ubiquitin ligase 1 (JUL1) is a RING-type E3 ubiquitin ligase that catalyzes ubiquitination of JAV1, a jasmonate signaling repressor, in Arabidopsis thaliana in response to herbivore attack. Here we present a new insight into the nature of JUL1 as a multi-targeting enzyme for not only JAV1 but also transcription factors (TFs) screened using in vitro and in vivo protein interaction assays. Reporter assays using protoplasts showed that the JUL1-interacting TFs (JiTFs), including ERF15, bZIP53 and ORA59, were involved in transcriptional activation of jasmonate-responsive PDF1.2 and abscisic acid-responsive GEA6. Likewise, assays using mutant plants suggested that the 3 JiTFs were indeed responsible for transcriptional regulation of PDF1.2 and/or GEA6, and ERF15 and ORA59 were substantially responsible for the anti-herbivore trait. In vitro protein ubiqutination assays showed that JUL1 catalyzed ubiqutination of JAV1 but not any of the TFs. This was in accord with the finding that JUL1 abolished JAV1's interference with ERF15 function, according to the reporter assay. Moreover, of great interest is our finding that ERF15 but not bZIP53 or ORA59 serves as a scaffold for the JAV1/JUL1 system, indicating that there is narrow selectivity of the transcriptional reprogramming by the JAV1/JUL1 system.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ubiquitina-Proteína Ligasas , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Front Microbiol ; 14: 1339549, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260872

RESUMEN

Despite its growing importance as a Cu resource, studies on tennantite bioleaching are highly limited. One of the key challenges in processing such Cu-As sulfides is their refractoriness and the solubilisation of toxic As. The ultimate goal is to achieve selective bioleaching of Cu with simultaneous immobilisation of As in the leach residues. This study investigated the effectiveness of activated carbon (AC)-assisted bioleaching of tennantite concentrate using a mixed culture containing various "strong" and "weak" Fe-oxidising bacteria/archaea plus a S-oxidising bacterium, with particular emphasis on controlling the solution redox potential (Eh). In the initial flask bioleaching tests, a steady increase in Eh (up to 840 mV) was observed, reflecting the activity of "strong" Fe-oxidisers. In this situation, AC dosing effectively suppressed the Eh value and the highest Cu dissolution (70%) was obtained in the AC-0.01% system, while simultaneously immobilising As. In order to maximise Cu dissolution and As immobilisation, it was found preferable to target the Eh range of 650-700 mV during bioleaching. The next bioreactor tests used the mixed culture of the same origin, but had been subcultured a few generations further on tennantite concentrate. The Eh level remained unexpectedly low (~630 mV) for most of the leaching period, regardless of the AC dosage. It was later found that the bioreactor systems were almost exclusively dominated by Sb. thermosulfidooxidans, a "weak" Fe oxidiser with high Cu/As tolerance. In this case, there was no need to artificially suppress the Eh level by AC dosing and Cu leached readily to a final Cu dissolution of ~60% while As dissolution was suppressed to ~15%. Thus, depending on the microbial community that develops at the processing site, Eh control can be achieved either naturally by the activity of "weak" Fe-oxidisers as the predominant survivors under high Cu/As stress, or artificially by the addition of an Eh regulator such as a carbon catalyst.

4.
J Cell Biol ; 220(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33156328

RESUMEN

In response to cholesterol deprivation, SCAP escorts SREBP transcription factors from the endoplasmic reticulum to the Golgi complex for their proteolytic activation, leading to gene expression for cholesterol synthesis and uptake. Here, we show that in cholesterol-fed cells, ER-localized SCAP interacts through Sac1 phosphatidylinositol 4-phosphate (PI4P) phosphatase with a VAP-OSBP complex, which mediates counter-transport of ER cholesterol and Golgi PI4P at ER-Golgi membrane contact sites (MCSs). SCAP knockdown inhibited the turnover of PI4P, perhaps due to a cholesterol transport defect, and altered the subcellular distribution of the VAP-OSBP complex. As in the case of perturbation of lipid transfer complexes at ER-Golgi MCSs, SCAP knockdown inhibited the biogenesis of the trans-Golgi network-derived transport carriers CARTS, which was reversed by expression of wild-type SCAP or a Golgi transport-defective mutant, but not of cholesterol sensing-defective mutants. Altogether, our findings reveal a new role for SCAP under cholesterol-fed conditions in the facilitation of CARTS biogenesis via ER-Golgi MCSs, depending on the ER cholesterol.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Red trans-Golgi/metabolismo , Colesterol/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Biológicos , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Transporte de Proteínas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
5.
Gan To Kagaku Ryoho ; 46(13): 2437-2439, 2019 Dec.
Artículo en Japonés | MEDLINE | ID: mdl-32156957

RESUMEN

With the advancement ofchemotherapy against colorectal cancer, clinical complete responses(cCR)are more frequently observed. We report a case oflocally advanced rectal cancer with maintained long-term cCR after chemotherapy alone. Detailed examinations ofa man in his 60s revealed that he had poorly controlled diabetes mellitus, with elevated serum CEA and CA19-9 levels. Colonoscopy revealed rectal cancer(Rba). Besides the prostate invasion observed in the CT scan, intestinal obstruction was caused by a tumor that required surgical removal. However, the tumor was unresectable due to prostate and pelvic wall metastases; therefore, only sigmoid colostomy was performed. After 6 courses of mFOLFOX6, the tumor shrunk, and prostate invasion reduced as confirmed by the CT scan. Chemotherapy was switched to sLV/5FU2 due to the occurrence of peripheral neuropathy. No tumor was found after 20 courses of treatment, and cCR was achieved after 58 courses ofcontinuous and consecutive treatment. Throughout the treatment, radical resection was proposed to the patient; however, the surgery was not performed because of his lifestyle, ie, heavy smoking, which resulted in poor blood sugar control. The patient appears to be tumor free for 7 years after the initiation of chemotherapy.


Asunto(s)
Neoplasias del Recto , Protocolos de Quimioterapia Combinada Antineoplásica , Colostomía , Fluorouracilo , Humanos , Leucovorina , Masculino , Neoplasias del Recto/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA