Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(25): 5306-5311, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38869452

RESUMEN

Dehydration of alcohols is one of the most fundamental transformations in the organic chemistry class and one of the most widely used methods for producing alkenes in synthetic research. Numerous methods and reagents have been developed to control the regio- and stereoselectivity as well as the dehydration efficiency of normal alcohols. Despite these achievements, regio- and stereoselective and predictable dehydration of allylic alcohol has seldom been reported, except for limited substrates with a native preferred elimination position, as a result of the challenges that many potential dienes could be formed via 1,2- or 1,4-syn- or anti-elimination. Here, we report a tBuOK/potassium 2,2-difluoroacetate-mediated 1,4-syn-dehydration of allylic alcohol for the synthesis of regio- and stereodefined conjugated dienes via an in situ generated directing group strategy. This reaction exhibits a broad substrate scope and good functional group compatibility for primary-tertiary alcohols. The simple and scalable (up to 0.6 mol) procedure with readily available and inexpensive reagents makes it a practical method for conjugated diene synthesis. Mechanistic studies reveal that an acetate with tert-butoxide and allyloxide acetal moiety is formed as an intermediate, in which the acetate and the acetal act as the directing group for the base-promoted elimination. An unusual H2 evolution is also involved in the reaction.

2.
Nanomaterials (Basel) ; 13(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37686942

RESUMEN

Enhanced catalysis for organic transformation is essential for the synthesis of high-value compounds. Atomic metal species recently emerged as highly effective catalysts for organic reactions with high activity and metal utilization. However, developing efficient atomic catalysts is always an attractive and challenging topic in the modern chemical industry. In this work, we report the preparation and activity enhancement of nitrogen- and sulfur-codoped holey graphene (NSHG) with the anchoring of atomic metal Pd. When employed as the catalyst for nitroarenes reduction reactions, the resultant Pd/NSHG composite exhibits remarkably high catalytic activity due to the co-existence of dual-active components (i.e., catalytically active NSHG support and homogeneous dispersion of atomic metal Pd). In the catalytic 4-nitrophenol (4-NP) reduction reaction, the efficiency (turnover frequency) is 3.99 × 10-2 mmol 4-NP/(mg cat.·min), which is better than that of metal-free nitrogen-doped holey graphene (NHG) (2.3 × 10-3 mmol 4-NP/(mg cat.·min)) and NSHG carbocatalyst (3.8 × 10-3 mmol 4-NP/(mg cat.·min)), the conventional Pd/C and other reported metal-based catalysts. This work provides a rational design strategy for the atomic metal catalysts loaded on active doped graphene support. The resultant Pd/NSHG dual-active component catalyst (DACC) is also anticipated to bring great application potentials for a broad range of organic fields, such as organic synthesis, environment treatment, energy storage and conversion.

3.
J Phys Chem Lett ; 12(13): 3443-3448, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33789044

RESUMEN

Exploring highly efficient catalysts with excellent photothermal conversion and further unveiling their catalytic mechanism are of significant importance for photothermal catalysis technologies, but there remain grand challenges to these activities. Herein, we fabricate a nest-like photothermal nanocatalyst with Pd decorated on a N-doped carbon functionalized Bi2S3 nanosphere (Bi2S3@NC@Pd). Given its well-dispersed ultrafine Pd nanoparticles and the excellent photothermal heating ability of support material, the Bi2S3@NC@Pd composite exhibits a superior activity and photothermal conversion property to commercial Pd/C catalyst for hydrogenation of organic dyes upon exposure to near-infrared (NIR) light irradiation. In addition, the photothermal effect (temperature rise) and activity enhancement of the heterogeneous catalysis system are further probed by comparing the reaction rate with and without the NIR light irradiation. Furthermore, the catalytic behaviors of the Bi2S3@NC@Pd catalyst under conventional and photothermal heating are investigated at the same reaction temperature. This work not only improves our fundamental understanding of the catalytic behavior in heterogeneous liquid-solid reaction systems under near-infrared irradiation but also may promote the design of catalysts with photothermally promoted activity.

4.
Chem Asian J ; 12(19): 2583-2590, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28731283

RESUMEN

Covalent functionalization of reduced graphene oxide (rGO) was performed by using conjugated polymers with different monomers through nucleophilic addition of nitrogen anions to rGO. Three conjugated polymers containing tetraphenylethylene, carbazole, and phenyl groups were used, and as a result of π-π interactions and the "polymer-wrapping" effect, the dispersion stability of rGO was improved. Even if the reaction site in the polymers was the same, there were great differences in the reactivities of the polymers, the dispersion stabilities of the resultant composites, and also the optical limiting (OL) performances of the resultant composites. The differences may be attributed to the π-conjugated structure and steric hindrance of the moiety in the polymer skeleton, which has scarcely been reported. Besides, the resultant rGO-P1 and rGO-P3 materials both showed excellent OL responses, even at 4 µJ. This behavior should enable their potential application in photonic and optoelectronic devices to protect human eyes or optical sensors from damage by intense laser irradiation.

5.
Chirality ; 22(1): 69-76, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19319988

RESUMEN

In our recent work, a series of dendritic chiral stationary phases (CSPs) were synthesized, in which the chiral selector was L-2-(p-toluenesulfonamido)-3-phenylpropionyl chloride (selector I), and the CSP derived from three-generation dendrimer showed the best separation ability. To further investigate the influence of the structures of dendrimer and chiral selector on enantioseparation ability, in this work, another series CSPs (CSPs 1-4) were prepared by immobilizing (1S,2R)-1,2-diphenyl-2-(3-phenylureido)ethyl 4-isocyanatophenylcarbamate (selector II) on one- to four-generation dendrimers that were prepared in previous work. CSPs 1 and 4 demonstrated the equivalent enantioseparation ability. CSPs 2 and 3 showed the best and poorest enantioseparation ability respectively. Basically, these two series of CSPs exhibited the equivalent enantioseparation ability although the chiral selectors were different. Considering the enantioseparation ability of the CSP derived from aminated silica gel and selector II is much better than that of the one derived from aminated silica gel and selector I, it is believed that the dendrimer conformation essentially impacts enantioseparation.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Dendrímeros/síntesis química , Etanolaminas/química , Cromatografía Líquida de Alta Presión/instrumentación , Dendrímeros/química , Espectroscopía Infrarroja por Transformada de Fourier , Estereoisomerismo
6.
Chirality ; 21(4): 442-8, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18655165

RESUMEN

A chiral selector was prepared through the reaction between (1S,2R)-(+)-2-amino-1,2-diphenylethanol and phenyl isocyanate. This selector was immobilized on aminated silica gel, respectively, with bifunctional group linkers of 1,4-phenylene diisocyanate, methylene-di-p-phenyl diisocyanate, and terephthaloyl chloride to produce corresponding three chiral stationary phases. The prepared compounds and chiral stationary phases were characterized by FT-IR, elemental analysis, (1)H NMR, and solid-state (1)H NMR. The enantioseparation ability of these chiral stationary phases was evaluated with structurally various chiral compounds. The chiral stationary phase prepared with 1,4-phenylene diisocyanate as linker showed excellent enantioseparation ability. The influence of different linkages on the enantioseparation was discussed.


Asunto(s)
Etanolaminas/química , Isocianatos/química , Amidas/química , Química Orgánica/métodos , Cromatografía/métodos , Cromatografía Líquida de Alta Presión/instrumentación , Espectroscopía de Resonancia Magnética , Modelos Químicos , Estructura Molecular , Gel de Sílice , Dióxido de Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier , Estereoisomerismo
7.
Chirality ; 20(7): 846-55, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18381735

RESUMEN

Four dendrimers were synthesized on aminopropyl-modified silica gel using methyl acrylate and ethylene diamine as building blocks by divergent method. Four generations of chiral stationary phases (CSPs) were prepared by coupling of L-2-(p-toluenesulfonamido)-3-phenylpropionyl chloride to corresponding dendrimers. The derivatives prepared on silica gel were characterized by FT-IR, (1)H NMR, and elemental analysis. The selector loadings of these four generations of CSPs generally showed a decrease tendency with the increase of generation numbers of dendrimers. The enantioseparation properties of these CSPs were preliminarily investigated by high-performance liquid chromatography. The CSP derived from the three-generation dendrimer exhibited the best enantioseparation capability. Effects of the mobile phase composition and molecular structures of racemic mixtures on enantioseparation were further studied.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Dendrímeros/síntesis química , Fenilalanina/química , Dendrímeros/química , Etilenodiaminas/química , Indicadores y Reactivos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Gel de Sílice , Dióxido de Silicio , Espectroscopía Infrarroja por Transformada de Fourier , Estereoisomerismo , Sulfonamidas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA