Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Endocrinol (Lausanne) ; 14: 1204744, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886639

RESUMEN

Background: Obesity and chronic obstructive pulmonary disease (COPD) are prevailing worldwide, bringing a heavy medical burden. Clinical and pathophysiological relationship between obesity and COPD is paradoxical and elusive. We aim to explore their inherent associations from clinical, genetic, and animal levels. Methods: We performed literature review and cohort analysis of patients with COPD to compare lung function, symptom, and prognosis among different weight groups. After retrieving datasets of obesity and COPD in Gene Expression Omnibus (GEO) database, we carried out differentially expressed gene analysis, functional enrichment, protein-protein interactions network, and weighted gene co-expression network analysis. Then, we acquired paraffin-embedded lung tissues of fatty acid-binding protein 4-Cre-BMPR2fl/fl conditional knockout (CKO) mice that were characterized by adipocyte-specific knockout of bone morphogenetic protein receptor 2 (BMPR2) for staining and analysis. Results: Our cohort study reports the effect of obesity on COPD is inconsistent with previous clinical studies. Lung function of overweight group was statistically superior to that of other groups. We also found that the inflammatory factors were significantly increased hub genes, and cytokine-associated pathways were enriched in white adipose tissue of patients with obesity. Similarly, injury repair-associated genes and pathways were further enhanced in the small airways of patients with COPD. CKO mice spontaneously developed lung injury, emphysema, and pulmonary vascular remodeling, along with increased infiltration of macrophages. BMPR2-defiecient adipocytes had dysregulated expression of adipocytokines. Conclusion: Inflammation and abnormal repair might be potential mechanisms of the pathological association between obesity and COPD. BMPR2-associated adipocyte dysfunction promoted lung inflammation and aberrant repair, in which adipocytokines might play a role and thus could be a promising therapeutic target.


Asunto(s)
Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Ratones , Estudios de Cohortes , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Neumonía/complicaciones , Obesidad/complicaciones , Obesidad/genética , Adipoquinas
2.
Free Radic Biol Med ; 195: 359-370, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36610560

RESUMEN

Cigarette smoking (CS) exposure-induced airway inflammatory responses drive the occurrence and development of emphysema and chronic obstructive pulmonary disease (COPD). However, its precise mechanisms have not been fully elucidated. In this study, we explore the role of Rab26 in CS exposure modulating the inflammatory response of airway epithelium and the novel mechanism of CS exposure regulation Rab26. These data showed that CS exposure and H2O2 (a type of ROS) suppressed the expression of Rab26 and increased the expression of DNMT3b in vivo and in vitro. GEO data analysis found the level of Rab26 was decreased in the lung tissue of COPD patients. CSE-induced ROS promoted DNA methylation of the Rab26 promoter and inhibited its promoter activity by elevating the DNMT3b level. Antioxidants N-Acetyl-l-cysteine (NAC), 5-Aza-2'-deoxycytidine (5-AZA) (DNA methylation inhibitor) and DNMT3B siRNA alleviated CSE's inhibitory effect on Rab26 expression in vitro. Importantly, NAC alleviated the improved expression of Rab26 and reduced DNMT3B expression, in the airway of smoking exposure as well as attenuated the inflammatory response in vivo. Overexpression of Rab26 attenuated CSE-induced production of inflammatory mediators through part inactivation of p38 and JNK MAPK. On the contrary, silencing Rab26 enhanced p38 and JNK activation and aggravated inflammatory response. These findings suggest that ROS-mediated Rab26 promoter hypermethylation is a critical step in cigarette smoking-induced airway epithelial inflammatory response. Restoring Rab26 in the airway epithelium might be a potential strategy for treating airway inflammation and COPD.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Especies Reactivas de Oxígeno , Proteínas de Unión al GTP rab , Humanos , Fumar Cigarrillos/efectos adversos , Metilación de ADN , Células Epiteliales/metabolismo , Peróxido de Hidrógeno/metabolismo , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Front Med (Lausanne) ; 10: 1265544, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249987

RESUMEN

Introduction: Considering the role of bacteria in the onset of acute exacerbation of COPD (AECOPD), we hypothesized that the use of influenza-Streptococcus pneumoniae vaccination, oral probiotics or inhaled amikacin could prevent AECOPD. Methods: In this pilot prospective, muti-central, randomized trial, moderate-to-very severe COPD subjects with a history of moderate-to-severe exacerbations in the previous year were enrolled and assigned in a ratio of 1:1:1:1 into 4 groups. All participants were managed based on the conventional treatment recommended by GOLD 2019 report for 3 months, with three groups receiving additional treatment of inhaled amikacin (0.4 g twice daily, 5-7 days monthly for 3 months), oral probiotic Lactobacillus rhamnosus GG (1 tablet daily for 3 months), or influenza-S. pneumoniae vaccination. The primary endpoint was time to the next onset of moderate-to-severe AECOPD from enrollment. Secondary endpoints included CAT score, mMRC score, adverse events, and survival in 12 months. Results: Among all 112 analyzed subjects (101 males, 96 smokers or ex-smokers, mean ± SD age 67.19 ± 7.39 years, FEV1 41.06 ± 16.09% predicted), those who were given dual vaccination (239.7 vs. 198.2 days, p = 0.044, 95%CI [0.85, 82.13]) and oral probiotics (248.8 vs. 198.2 days, p = 0.017, 95%CI [7.49, 93.59]) had significantly delayed onset of next moderate-to-severe AECOPD than those received conventional treatment only. For subjects with high symptom burden, the exacerbations were significantly delayed in inhaled amikacin group as compared to the conventional treatment group (237.3 vs. 179.1 days, p = 0.009, 95%CI [12.40,104.04]). The three interventions seemed to be safe and well tolerated for patient with stable COPD. Conclusion: The influenza-S. pneumoniae vaccine and long-term oral probiotic LGG can significantly delay the next moderate-to-severe AECOPD. Periodically amikacin inhalation seems to work in symptomatic patients. The findings in the current study warrants validation in future studies with microbiome investigation.Clinical trial registration:https://clinicaltrials.gov/, identifier NCT03449459.

4.
Tumour Biol ; 37(4): 4929-37, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26526583

RESUMEN

The presence of cancer stem cells (CSCs) is the source of occurrence, aggravation, and recurrence of lung cancer. Accordingly, targeting killing the lung CSCs has been suggested to be an effective approach for lung cancer treatment. In this study, we showed that rapamycin inhibited the mammalian target of rapamycin (mTOR) signal transduction in A549 cells and improved the sensitivity to cisplatin (DDP). The mechanisms involve inhibition of the SOX2 expression, cell proliferation, epithelial-mesenchymal transition (EMT) phenotype, and sphere formation. Interestingly, knocked down SOX2 was a similar effect with rapamycin in A549 sphere. Furthermore, we showed that ectopic expression of Sox2 in A549 cells was sufficient to render them more resistant to rapamycin treatment in vitro. These data suggested that rapamycin inhibited the function of lung CSCs via SOX2. It will be of great interest to further explore the therapeutic strategies of lung cancer.


Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Factores de Transcripción SOXB1/genética , Sirolimus/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/administración & dosificación , Resistencia a Antineoplásicos/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Factores de Transcripción SOXB1/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA