Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Phytomedicine ; 114: 154739, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004404

RESUMEN

BACKGROUND: Osteoporosis is a prevalent bone metabolic disease in menopause, and long-term medication is accompanied by serious side effects. Estrogen deficiency-mediated hyperactivated osteoclasts is the initiating factor for bone loss, which is regulated by nuclear factor-κB (NF-κB) signaling. Safranal (Saf) is a monoterpene aldehyde produced from Saffron (Crocus sativus L.) and possesses multiple biological properties, particularly the anti-inflammatory property. However, Saf's role in osteoporosis remains unknown. PURPOSE: This study aims to validate the role of Saf in osteoporosis and explore the potential mechanism. STUDY DESIGN: The RANKL-exposed mouse BMM (bone marrow monocytes) and the castration-mediated osteoporosis model were applied to explore the effect and mechanism of Saf in vitro and in vivo. METHOD: The effect of Saf on osteoclast formation and function were assessed by TRAcP staining, bone-resorptive experiment, qPCR, immunoblotting and immunofluorescence, etc. Micro-CT, HE, TRAcP and immunohistochemical staining were performed to estimate the effects of Saf administration on OVX-mediated osteoporosis in mice at imaging and histological levels. RESULTS: Saf concentration-dependently inhibited RANKL-mediated osteoclast differentiation without affecting cellular viability. Meanwhile, Saf-mediated anti-osteolytic capacity and Sirt1 upregulation were also found in ovariectomized mice. Mechanistically, Saf interfered with NF-κB signaling by activating Sirt1 to increase p65 deacetylation and inactivating IKK to decrease IκBα degradation. CONCLUSION: Our results support the potential application of Saf as a therapeutic agent for osteoporosis.


Asunto(s)
Osteoporosis , Animales , Ratones , Ratones Endogámicos C57BL , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Estrógenos/deficiencia , Estrógenos/metabolismo , Femenino , Osteoclastos , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Ovariectomía , FN-kappa B/metabolismo , Acetilación
2.
Int Immunopharmacol ; 117: 109893, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36842234

RESUMEN

Osteoporosis is a prevalent bone metabolic disease in menopause, and long-term medication is accompanied by serious side effects. Ginger, a food spice and traditional medicine with ancient history, exhibits the potential to alleviate osteoporosis in preclinical experiments, whereas its complex composition leads to ambiguous pharmacological mechanisms. The purpose of this study was to investigate the effect and mechanism of Ced in estrogen-deficient osteoporosis, a sesquiterpene alcohol recently discovered from Ginger with multiple pharmacological properties. RANKL was stimulated BMM (bone marrow macrophages) differentiation into osteoclasts in vitro. And the osteoclast activity and number were assessed by TRAcP and SEM. We found that Ced mitigated RANKL-induced osteoclastogenesis by descending the ROS content and obstructing NFATc1, NF-κB, and MAPK signaling. Also, Ced-mediated anti-osteolytic property was found in ovariectomized mice by Micro-CT scanning and histological staining. Summarily, our works demonstrated the anti-osteoporotic potential of Cedrol in Ginger for the first time, which also offered more pharmacological evidence for Ginger as food or medicine used for bone metabolic disease.


Asunto(s)
Osteoporosis , Zingiber officinale , Femenino , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Osteoclastos , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Osteogénesis , FN-kappa B/metabolismo , Estrógenos/metabolismo , Ligando RANK/metabolismo , Factores de Transcripción NFATC/metabolismo , Diferenciación Celular
3.
J Nanobiotechnology ; 20(1): 220, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36310171

RESUMEN

BACKGROUND: Glucocorticoids (GCs) overuse is associated with decreased bone mass and osseous vasculature destruction, leading to severe osteoporosis. Platelet lysates (PL) as a pool of growth factors (GFs) were widely used in local bone repair by its potent pro-regeneration and pro-angiogenesis. However, it is still seldom applied for treating systemic osteopathia due to the lack of a suitable delivery strategy. The non-targeted distribution of GFs might cause tumorigenesis in other organs. RESULTS: In this study, PL-derived exosomes (PL-exo) were isolated to enrich the platelet-derived GFs, followed by conjugating with alendronate (ALN) grafted PEGylated phospholipid (DSPE-PEG-ALN) to establish a bone-targeting PL-exo (PL-exo-ALN). The in vitro hydroxyapatite binding affinity and in vivo bone targeting aggregation of PL-exo were significantly enhanced after ALN modification. Besides directly modulating the osteogenic and angiogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and endothelial progenitor cells (EPCs), respectively, PL-exo-ALN also facilitate their coupling under GCs' stimulation. Additionally, intravenous injection of PL-exo-ALN could successfully rescue GCs induced osteoporosis (GIOP) in vivo. CONCLUSIONS: PL-exo-ALN may be utilized as a novel nanoplatform for precise infusion of GFs to bone sites and exerts promising therapeutic potential for GIOP.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Osteoporosis , Humanos , Exosomas/metabolismo , Glucocorticoides/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Osteoporosis/inducido químicamente , Osteoporosis/tratamiento farmacológico , Alendronato/farmacología
4.
Phytomedicine ; 102: 154176, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35660354

RESUMEN

BACKGROUND: Intervertebral disc degeneration (IVDD) is a highly prevalent musculoskeletal disorder characterized by a local inflammatory response associated with the IL-1ß/NLRP3 inflammasome positive feedback loop. Rice bran-derived gamma-oryzanol (Ory) as a sterol ferulate has attracted much attention due to its powerful anti-inflammatory, hypoglycemic and hypolipidemic health effects. As a clinical pharmaceutical for autonomic disorders, Ory's role in musculoskeletal degenerative disease remains unknown. PURPOSE: This study aims to validate the role of Ory in IVDD and explore the potential mechanism. STUDY DESIGN: Establishing the in vitro and in vivo IVDD models to detect the protective effect and molecular mechanism of Ory. METHOD: The anti-ECM degradation, antioxidant and anti-NLRP3 inflammasome activation effects of Ory on IL-1ß-stimulated nucleus pulposus (NP) cells were assessed by immunoblotting and immunofluorescence, etc. MRI, S-O staining and immunohistochemistry were performed to estimate the effects of Ory administration on acupuncture-mediated IVDD in rats at imaging and histological levels. RESULTS: Ory treatment inhibited IL-1ß-mediated ECM degradation, oxidative stress and NLRP3 inflammasome activation in NP cells. By interfering with NF-κB signaling and ROS overproduction, Ory interrupted IL-1ß/NLRP3-inflammasome positive cycle. In vivo experiments showed that Ory delayed acupuncture-mediated IVDD development. CONCLUSION: Our results support the potential application of Ory as a therapeutic compound for IVDD.


Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Animales , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Fenilpropionatos , Ratas
5.
Cell Death Discov ; 8(1): 209, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440086

RESUMEN

Intervertebral disc degeneration (IVDD) is a chronic age-related degenerative disease accompanied by complex pathophysiological mechanisms. Increasing evidence indicates that NLRP3 inflammasome mediated pyroptosis of nucleus pulposus (NP) cells displays an important role in the pathological progression of IVDD. Milk fat globule-EGF factor-8 (MFG-E8) is an endogenously secreted glycoprotein with beneficial effects of anti-inflammatory, antioxidant, and modulation of NLRP3 inflammasome. However, the effect of MFG-E8 on IVDD remains unclear. In this study, our purpose is to clarify the expression changes of MFG-E8 in the IVDD process and explore the role and mechanism of MFG-E8. We found that MFG-E8's expression was reduced in degraded nucleus pulposus tissues of humans and rats as well as hydrogen peroxide (H2O2)-treated NP cells. Exogenous supplementation of MFG-E8 could rescue H2O2-induced oxidative stress, mitochondrial dysfunction, and NLRP3 inflammasome activation and protect NP cells from pyroptosis and extracellular matrix (ECM) degradation. Mechanistically, Nrf2/TXNIP/NLRP3 axis plays a crucial role in MFG-E8-mediated suppression of the above-pathological events. In vivo, we established a rat intervertebral disc acupuncture model and found that MFG-E8 administration effectively alleviated IVDD development by imageological and histomorphological evaluation. Overall, our findings revealed the internal mechanisms underlying MFG-E8 regulation in NP cells and its intrinsic value for IVDD therapy.

6.
J Cell Mol Med ; 26(3): 725-735, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34953038

RESUMEN

Abnormal lipid metabolism, such as systemic increased free fatty acid, results in overproduction of pro-inflammatory enzymes and cytokines, which is crucial in the development of obesity-related osteoarthritis (OA). However, there are only a few drugs that target the lipotoxicity of OA. Recent researches have documented that the traditional Chinese medicine, Sparstolonin B (Ssn B), exerted anti-inflammatory effects in various diseases, but not yet in OA. On the basis of this evidence, our works purposed to evaluate the effect of Ssn B on free fatty acid (FFA) palmitate (PA)-stimulated human osteoarthritic chondrocytes and obesity-associated mouse OA model. We found that Ssn B suppressed PA-triggered inflammatory response and extracellular matrix catabolism in a concentration-dependent approach. In vivo, Ssn B treatment inhibited cartilage degeneration and subchondral bone calcification caused by joint mechanical imbalance and alleviated metabolic inflammation in obesity. Mechanistically, co-immunoprecipitine and molecular docking analysis showed that the formation of toll-like receptor 4 (TLR4)/myeloid differentiation protein-2 (MD-2) complex caused by PA was blocked by Ssn B. Subsequently, it leads to inactivation of PA-caused myeloid differentiation factor 88 (MyD88)-dependent nuclear factor-kappaB (NF-κB) cascade. Together, these findings demonstrated that Ssn B is a potential treatment agent for joint degenerative diseases in obese individuals.


Asunto(s)
Condrocitos , Osteoartritis , Animales , Condrocitos/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones , Ratones Obesos , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/etiología , Osteoartritis/metabolismo , Palmitatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA