Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Small ; : e2401407, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39385643

RESUMEN

Spinal cord injury (SCI) is a severe clinical disease usually accompanied by activated glial scar, neuronal axon rupture, and disabled motor function. To mimic the microenvironment of the SCI injury site, a hydrogel system with a comparable mechanical property to the spinal cord is desirable. Therefore, a novel elastic bovine serum albumin (BSA) hydrogel is fabricated with excellent adhesive, injectable, and biocompatible properties. The hydrogel is used to deliver paclitaxel (PTX) together with basic fibroblast growth factor (bFGF) to inhibit glial scar formation as well as promote axon regeneration and motor function for SCI repair. Due to the specific interaction of BSA with both drugs, bFGF, and PTX can be controllably released from the hydrogel system to achieve an effective concentration at the wound site during the SCI regeneration process. Moreover, benefiting from the combination of PTX and bFGF, this bFGF/PTX@BSA system significantly aided axon repair by promoting the elongation of axons across the glial scar with reduced reactive astrocyte secretion. In addition, remarkable anti-apoptosis of nerve cells is evident with the bFGF/PTX@BSA system. Subsequently, this multi-functionalized drug system significantly improved the motor function of the rats after SCI. These results reveal that bFGF/PTX@BSA is an ideal functionalized material for nerve repair in SCI.

2.
J Control Release ; 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39447843

RESUMEN

Basic fibroblast growth factor (bFGF) has proved to be effective for wound healing, yet its effectiveness is extremely retarded in diabetic wounds due to the severe oxidative stress in wound beds. To solve this issue, herein a novel combination therapy of bFGF and N-acetylcysteine (NAC, antioxidant) was devised for improved diabetic wound repair. To avoid rapid loss of both drugs in the wound beds, a bioresponsive hydrogel (bFGF-HSPP-NAC) was engineered by incorporating bFGF and NAC into polymer-drug conjugates (HSPP) via thiol-disulfide exchange reactions. In response to oxidative stress (e.g., reactive oxygen species), the disulfide bonds (SS) within the hydrogel are broken into thiol groups (-S-H), thereby promoting hydrogel degradation and enabling controlled drug release. Initially, NAC is released to scavenge free radicals and ameliorate oxidative damage. Subsequently, bFGF is released to expedite tissue regeneration. This combinatorial strategy is tailored to the specific characteristics of the wound microenvironment at various stages of diabetic wound healing, thereby achieving therapeutic efficacy. The results indicate that the bFGF-HSPP-NAC hydrogel markedly enhances re-epithelialization, collagen deposition, hair follicle regeneration, and neovascularization. In conclusion, the bioresponsive bFGF-HSPP-NAC hydrogel demonstrates significant potential for application in combinatorial therapeutic approaches for diabetic wound healing.

3.
Int J Biol Macromol ; 282(Pt 1): 136486, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39423968

RESUMEN

The application of acidic fibroblast growth factor (aFGF) has shown great potential in the treatment of scald or burn wounds with high morbidity and mortality, especially in promoting the repair of deep partial-thickness wounds. However, its short half-life and instability in vivo do pose challenges for clinical application. Herein, two kinds of bio-inspired modified piezoelectric chitosan (CS) films, namely heparin-coated CS film (HCS) and polydopamine-coated CS film (DCS), are facially fabricated and adopted as controlled-release platforms for local delivery of aFGF. Polydopamine or heparin layers serve as a bridge grafting on chitosan films, facilitating the loading of aFGF and enabling controlled release of aFGF from the piezoelectric film through intermolecular interactions. Additionally, these layers enhance the hydrophilicity and antibacterial properties of the bare CS film due to their inherent biological activities. Furthermore, the polydopamine coating imparts photothermal activity to the CS film. The in vivo experiments ascertain that the synergetic effect of the controlled-released aFGF and low temperature photothermal therapy collectively accelerate scald wound healing outcomes within 14 days by facilitating granulation formation, collagen deposition, re-epithelialization and angiogenesis. This study opens up new possibilities for the development of multifunctional chitosan-based wound dressings and the creation of innovative drug delivery platforms.

4.
Colloids Surf B Biointerfaces ; 245: 114263, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39332055

RESUMEN

Rapid and scar-free healing of burn wounds is an urgent clinical issue. Basic fibroblast growth factor (bFGF) has been proven to promote the healing of burn wounds by accelerating ECM remodeling and angiogenesis. However, exudates from burn wounds can accelerate bFGF degradation, thereby affecting its bioactivity. This study proposes an effective protection strategy for bFGF that involves encapsulating bFGF in nanoliposomes (bFGF-NLip) and then incorporating bFGF-NLip into a bovine serum albumin (BSA) hydrogel. This hybrid hydrogel system (bFGF-NLip@B) could maintain the activity of bFGF, achieve sustained release, and allow phospholipids and cholesterol to penetrate the skin, thereby enabling bFGF to function in the dermis. The experimental results showed that the hydrogel was injectable with good mechanical properties and biocompatibility. In a mouse scald wound model, owing to the sustained release of bFGF and skin permeation function of the nanoliposomes, the hydrogel promoted granulation formation, collagen deposition, vascular regeneration, and re-epithelialisation, ultimately accelerating wound healing. In addition, the hydrogel effectively inhibited scar formation. This system provides novel insights into the delivery of bFGF and scar-free healing of burn wounds.

5.
Small ; 20(34): e2307485, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38623988

RESUMEN

Severe burn wounds usually destroy key cells' functions of the skin resulting in delayed re-epithelization and wound regeneration. Promoting key cells' activities is crucial for burn wound repair. It is well known that keratinocyte growth factor-2 (KGF-2) participates in the proliferation and morphogenesis of epithelial cells while acidic fibroblast growth factor (aFGF) is a key mediator for fibroblast and endothelial cell growth and differentiation. However, thick eschar and the harsh environment of a burn wound often decrease the delivery efficiency of fibroblast growth factor (FGF) to the wound site. Therefore, herein a novel microneedle patch for sequential transdermal delivery of KGF-2 and aFGF is fabricated to enhance burn wound therapy. aFGF is first loaded in the nanoparticle (NPaFGF) and then encapsulated NPaFGF with KGF-2 in the microneedle patch (KGF-2/NPaFGF@MN). The result shows that KGF-2/NPaFGF@MN can successfully get across the eschar and sequentially release KGF-2 and aFGF. Additional data demonstrated that KGF-2/NPaFGF@MN achieved a quicker wound closure rate with reduced necrotic tissues, faster re-epithelialization, enhanced collagen deposition, and increased neo-vascularization. Further evidence suggests that improved wound healing is regulated by significantly elevated expressions of hypoxia-inducible factor-1 alpha (HIF-1ɑ) and heat shock protein 90 (Hsp90) in burn wounds. All these data proved that KGF-2/NPaFGF@MN is an effective treatment for wound healing of burns.


Asunto(s)
Quemaduras , Agujas , Cicatrización de Heridas , Quemaduras/tratamiento farmacológico , Animales , Cicatrización de Heridas/efectos de los fármacos , Administración Cutánea , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/administración & dosificación , Humanos , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Ratones
6.
ACS Appl Bio Mater ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38050811

RESUMEN

Cancer immunotherapy has revolutionized clinical cancer treatments by taking advantage of the immune system to selectively and effectively target and kill cancer cells. However, clinical cancer immunotherapy treatments often have limited efficacy and/or present severe adverse effects associated primarily with their systemic administration. Localized immunotherapy has emerged to overcome these limitations by directly targeting accessible tumors via local administration, reducing potential systemic drug distribution that hampers drug efficacy and safety. Sustained-release formulations can prolong drug activity at target sites, which maximizes the benefits of localized immunotherapy to increase the therapeutic window using smaller dosages than those used for systemic injection, avoiding complications of frequent dosing. The performance of sustained-release formulations for localized cancer immunotherapy has been validated preclinically using various implantable and injectable scaffold platforms. This review introduces the sustained-release formulations developed for localized cancer immunotherapy and highlights their biomaterial-based platforms for representative classes, including inorganic scaffolds, natural hydrogels, synthetic hydrogels, and microneedle patches. The design rationale and other considerations are summarized for further development of biomaterials for the construction of optimal sustained-release formulations.

7.
Bioeng Transl Med ; 8(6): e10540, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38023724

RESUMEN

The management of infected wounds is still an intractable challenge in clinic. Development of antibacterial wound dressing is of great practical significance for wound management. Herein, a natural-derived antibacterial drug, tannic acid (TA), was incorporated into the electrospun polyvinyl alcohol (PVA) fiber (TA/PVA fiber, 952 ± 40 nm in diameter). TA worked as a cross-linker via hydrogen bonding with PVA to improve the physicochemical properties of the fiber and to reach a sustained drug release (88% release of drug at 48 h). Improved mechanical property (0.8-1.2 MPa) and computational simulation validated the formation of the hydrogen bonds between TA and PVA. Moreover, the antibacterial and anti-inflammatory characteristics of TA laid the foundation for the application of TA/PVA fiber in repairing infected wounds. Meanwhile, in vitro studies proved the high hemocompatibility and cytocompatibility of TA/PVA fiber. Further in vivo animal investigation showed that the TA/PVA fiber promoted the repair of infected wound by inhibiting the bacterial growth, promoting granulation formation, and collagen matrix deposition, accelerating angiogenesis, and inducing M2 macrophage polarization within 14 days. All the data demonstrated that the TA cross-linked fiber would be a potent dressing for bacteria-infected wound healing.

8.
Front Bioeng Biotechnol ; 10: 968078, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118565

RESUMEN

As conventional treatments for diabetic wounds often fail to achieve rapid satisfactory healing, the development of effective strategies to accelerate diabetic wound repair is highly demanded. Herein, fibroblast growth factor 21 (FGF21) and metformin co-loaded multifunctional polyvinyl alcohol (PVA) hydrogel were fabricated for improved diabetic wound healing. The in vitro results proved that the hydrogel was adhesive and injectable, and that it could particularly scavenge reactive oxygen species (ROSs), while the in vivo data demonstrated that the hydrogel could promote angiogenesis by recruiting endothelial progenitor cells (EPCs) through upregulation of Ang-1. Both ROSs' removal and EPCs' recruitment finally resulted in enhanced diabetic wound healing. This work opens a strategy approach to diabetic wound management by combining biological macromolecules and small chemical molecules together using one promising environmental modulating drug delivery system.

9.
Front Mol Biosci ; 9: 929718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060247

RESUMEN

Lower extremity arterial disease (LEAD) is a major vascular complication of diabetes. Vascular endothelial cells dysfunction can exacerbate local ischemia, leading to a significant increase in amputation, disability, and even mortality in patients with diabetes combined with LEAD. Therefore, it is of great clinical importance to explore proper and effective treatments. Conventional treatments of diabetic LEAD include lifestyle management, medication, open surgery, endovascular treatment, and amputation. As interdisciplinary research emerges, regenerative medicine strategies have provided new insights to treat chronic limb threatening ischemia (CLTI). Therapeutic angiogenesis strategies, such as delivering growth factors, stem cells, drugs to ischemic tissues, have also been proposed to treat LEAD by fundamentally stimulating multidimensional vascular regeneration. Recent years have seen the rapid growth of tissue engineering technology; tissue-engineered biomaterials have been used to study the treatment of LEAD, such as encapsulation of growth factors and drugs in hydrogel to facilitate the restoration of blood perfusion in ischemic tissues of animals. The primary purpose of this review is to introduce treatments and novel biomaterials development in LEAD. Firstly, the pathogenesis of LEAD is briefly described. Secondly, conventional therapies and therapeutic angiogenesis strategies of LEAD are discussed. Finally, recent research advances and future perspectives on biomaterials in LEAD are proposed.

10.
J Mater Chem B ; 10(37): 7397-7417, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35770701

RESUMEN

Psoriasis is an autoimmune inflammatory disease which is fundamentally different from dermatitis. Its treatments include topical medications and systemic drugs depending on different stages of the disease. However, these commonly used therapies are falling far short of clinical needs due to various drawbacks. More precise therapeutic strategies with minimized side effects and improved compliance are highly demanded. Recently, the rapid development of biomaterial-based therapies has made it possible and promising to attain topical psoriasis treatment. In this review, we briefly describe the significance and challenges of the topical treatment of psoriasis and emphatically overview the latest progress in novel biomaterial-based topical therapies for psoriasis including microneedles, nanoparticles, nanofibers, and hydrogels. Current clinical trials related to each biomaterial are also summarized and discussed.


Asunto(s)
Nanopartículas , Psoriasis , Administración Tópica , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Humanos , Hidrogeles/uso terapéutico , Psoriasis/tratamiento farmacológico
12.
Int J Biol Macromol ; 199: 69-76, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-34973992

RESUMEN

Pressure ulcer (PU) in patients with diabetes mellitus (DM) is still a clinical intractable issue due to the complicated physiological characteristics by the prolonged high glucose level and impaired angiogenesis. The PU treatment includes surgical debridement, stem cell therapy and growth factors, leading to high cost and repeated professional involvement. Developing effective wound dressing combining the therapeutic cells and growth factors has become highly demanded. Herein, we reported the direct subcutaneous administration of endothelial progenitor cells (EPCs) and acid fibroblast growth factor (aFGF) with a shape-memorable methacrylated gelatin cryogel (EPCs/aFGF@GelMA) for the therapy of PU in rats with DM. This EPCs/aFGF@GelMA cryogel system presented microporous structure, elastic mechanical strength and enhanced cell migration property with controlled release of aFGF. Moreover, compared with EPCs/aFGF and GelMA alone, in vivo results showed that this EPCs/aFGF@GelMA system exhibited accelerated wound closure rate, enhanced granulation formation, collagen deposition as well as re-epithelization. Importantly, we found that the excellent positive performance of EPCs/aFGF@GelMA is due to its up-regulation of HIF-ɑ upon the wound site, modulating the microenvironment of wound site to initiate the impaired local angiogenesis. Collectively, this hybrid gelatin cryogels show great promise for biomedical applications, especially in tissue engineering and regenerative medicine.


Asunto(s)
Diabetes Mellitus , Células Progenitoras Endoteliales , Úlcera por Presión , Animales , Criogeles/química , Diabetes Mellitus/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Gelatina/química , Humanos , Úlcera por Presión/metabolismo , Úlcera por Presión/terapia , Ratas
13.
Adv Sci (Weinh) ; 9(5): e2102557, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34939355

RESUMEN

Protein-based hydrogels have attracted great attention due to their excellent biocompatible properties, but often suffer from weak mechanical strength. Conventional strengthening strategies for protein-based hydrogels are to introduce nanoparticles or synthetic polymers for improving their mechanical strength, but often compromise their biocompatibility. Here, a new, general, protein unfolding-chemical coupling (PNC) strategy is developed to fabricate pure protein hydrogels without any additives to achieve both high mechanical strength and excellent cell biocompatibility. This PNC strategy combines thermal-induced protein unfolding/gelation to form a physically-crosslinked network and a -NH2/-COOH coupling reaction to generate a chemicallycrosslinked network. Using bovine serum albumin (BSA) as a globular protein, PNC-BSA hydrogels show macroscopic transparency, high stability, high mechanical properties (compressive/tensile strength of 115/0.43 MPa), fast stiffness/toughness recovery of 85%/91% at room temperature, good fatigue resistance, and low cell cytotoxicity and red blood cell hemolysis. More importantly, the PNC strategy can be not only generally applied to silk fibroin, ovalbumin, and milk albumin protein to form different, high strength protein hydrogels, but also modified with PEDOT/PSS nanoparticles as strain sensors and fluorescent fillers as color sensors. This work demonstrates a new, universal, PNC method to prepare high strength, multi-functional, pure protein hydrogels beyond a few available today.


Asunto(s)
Fibroínas , Hidrogeles , Fibroínas/química , Hidrogeles/química , Polímeros , Desplegamiento Proteico , Albúmina Sérica Bovina
14.
Molecules ; 26(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34641460

RESUMEN

A microneedle (MN) is a painless and minimally invasive drug delivery device initially developed in 1976. As microneedle technology evolves, microneedles with different shapes (cone and pyramid) and forms (solid, drug-coated, hollow, dissolvable and hydrogel-based microneedles) have been developed. The main objective of this review is the applications of microneedles in biomedical areas. Firstly, the classifications and manufacturing of microneedle are briefly introduced so that we can learn the advantages and fabrications of different MNs. Secondly, research of microneedles in biomedical therapy such as drug delivery systems, diagnoses of disease, as well as wound repair and cancer therapy are overviewed. Finally, the safety and the vision of the future of MNs are discussed.


Asunto(s)
Sistemas de Liberación de Medicamentos , Microinyecciones/instrumentación , Microinyecciones/métodos , Agujas/estadística & datos numéricos , Preparaciones Farmacéuticas/administración & dosificación , Animales , Humanos
15.
Front Bioeng Biotechnol ; 9: 740863, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692658

RESUMEN

Pressure ulcer (PU) is a worldwide problem that is hard to heal because of its prolonged inflammatory response and impaired ECM deposition caused by local hypoxia and repeated ischemia/reperfusion. Our previous study discovered that the non-fouling zwitterionic sulfated poly (sulfobetaine methacrylate) (SBMA) hydrogel can improve PU healing with rapid ECM rebuilding. However, the mechanism of the SBMA hydrogel in promoting ECM rebuilding is unclear. Therefore, in this work, the impact of the SBMA hydrogel on ECM reconstruction is comprehensively studied, and the underlying mechanism is intensively investigated in a rat PU model. The in vivo data demonstrate that compared to the PEG hydrogel, the SBMA hydrogel enhances the ECM remolding by the upregulation of fibronectin and laminin expression as well as the inhibition of MMP-2. Further investigation reveals that the decreased MMP-2 expression of zwitterionic SBMA hydrogel treatment is due to the activation of autophagy through the inhibited PI3K/Akt/mTOR signaling pathway and reduced inflammation. The association of autophagy with ECM remodeling may provide a way in guiding the design of biomaterial-based wound dressing for chronic wound repair.

16.
Cell Death Dis ; 12(9): 841, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34497269

RESUMEN

Although aberrant alveolar myofibroblasts (AMYFs) proliferation and differentiation are often associated with abnormal lung development and diseases, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF), epigenetic mechanisms regulating proliferation and differentiation of AMYFs remain poorly understood. Protein arginine methyltransferase 7 (PRMT7) is the only reported type III enzyme responsible for monomethylation of arginine residue on both histone and nonhistone substrates. Here we provide evidence for PRMT7's function in regulating AMYFs proliferation and differentiation during lung alveologenesis. In PRMT7-deficient mice, we found reduced AMYFs proliferation and differentiation, abnormal elastin deposition, and failure of alveolar septum formation. We further shown that oncogene forkhead box M1 (Foxm1) is a direct target of PRMT7 and that PRMT7-catalyzed monomethylation at histone H4 arginine 3 (H4R3me1) directly associate with chromatin of Foxm1 to activate its transcription, and thereby regulate of cell cycle-related genes to inhibit AMYFs proliferation and differentiation. Overexpression of Foxm1 in isolated myofibroblasts (MYFs) significantly rescued PRMT7-deficiency-induced cell proliferation and differentiation defects. Thus, our results reveal a novel epigenetic mechanism through which PRMT7-mediated histone arginine monomethylation activates Foxm1 transcriptional expression to regulate AMYFs proliferation and differentiation during lung alveologenesis and may represent a potential target for intervention in pulmonary diseases.


Asunto(s)
Diferenciación Celular , Proteína Forkhead Box M1/metabolismo , Miofibroblastos/citología , Miofibroblastos/metabolismo , Organogénesis , Proteína-Arginina N-Metiltransferasas/metabolismo , Alveolos Pulmonares/embriología , Actinas/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Proliferación Celular/genética , Elastina/metabolismo , Epigénesis Genética , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Antígeno Ki-67/metabolismo , Mesodermo/embriología , Ratones , Modelos Biológicos , Especificidad de Órganos , Organogénesis/genética , Fenotipo , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteína-Arginina N-Metiltransferasas/deficiencia , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo
17.
Chem Sci ; 12(26): 9124-9139, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34276942

RESUMEN

Amyloid aggregation and microbial infection are considered as pathological risk factors for developing amyloid diseases, including Alzheimer's disease (AD), type II diabetes (T2D), Parkinson's disease (PD), and medullary thyroid carcinoma (MTC). Due to the multifactorial nature of amyloid diseases, single-target drugs and treatments have mostly failed to inhibit amyloid aggregation and microbial infection simultaneously, thus leading to marginal benefits for amyloid inhibition and medical treatments. Herein, we proposed and demonstrated a new "anti-amyloid and antimicrobial hypothesis" to discover two host-defense antimicrobial peptides of α-defensins containing ß-rich structures (human neutrophil peptide of HNP-1 and rabbit neutrophil peptide of NP-3A), which have demonstrated multi-target, sequence-independent functions to (i) prevent the aggregation and misfolding of different amyloid proteins of amyloid-ß (Aß, associated with AD), human islet amyloid polypeptide (hIAPP, associated with T2D), and human calcitonin (hCT, associated with MTC) at sub-stoichiometric concentrations, (ii) reduce amyloid-induced cell toxicity, and (iii) retain their original antimicrobial activity upon the formation of complexes with amyloid peptides. Further structural analysis showed that the sequence-independent amyloid inhibition function of α-defensins mainly stems from their cross-interactions with amyloid proteins via ß-structure interactions. The discovery of antimicrobial peptides containing ß-structures to inhibit both microbial infection and amyloid aggregation greatly expands the new therapeutic potential of antimicrobial peptides as multi-target amyloid inhibitors for better understanding pathological causes and treatments of amyloid diseases.

18.
ACS Appl Mater Interfaces ; 13(2): 2230-2244, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33403850

RESUMEN

Efficient reconstruction of a fully functional skin after wounds requires multiple functionalities of wound dressing due to the complexity of healing. In these regards, topical administration of functionalized nanoparticles capable of sustainably releasing bioactive agents to the wound site may significantly accelerate wound repair. Among the various nanoparticles, superparamagnetic iron oxide (Fe3O4) nanoparticles gain increasing attractiveness due to their intrinsic response to an external magnetic field (eMF). Herein, based on the Fe3O4 nanoparticle, we developed a fibroblast growth factor (bFGF)-loaded Fe3O4 nanoparticle using a simple mussel-inspired surface immobilization method. This nanoparticle, named as bFGF-HDC@Fe3O4, could stabilize bFGF in various conditions and exhibited sustained release of bFGF. In addition, an in vitro study discovered that bFGF-HDC@Fe3O4 could promote macrophage polarization toward an anti-inflammatory (pro-healing) M2 phenotype especially under eMF. Further, in vivo full-thickness wound animal models demonstrated that bFGF-HDC@Fe3O4 could significantly accelerate wound healing through M2 macrophage polarization and increased cell proliferation. Therefore, this approach of realizing sustained the release of the growth factor with magnetically macrophage regulating behavior through modification of Fe3O4 nanoparticles offers promising potential to tissue-regenerative applications.


Asunto(s)
Preparaciones de Acción Retardada/química , Dopamina/análogos & derivados , Factores de Crecimiento de Fibroblastos/administración & dosificación , Heparina/química , Nanopartículas de Magnetita/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Materiales Biomiméticos/química , Bivalvos/química , Factores de Crecimiento de Fibroblastos/farmacología , Activación de Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIH , Propiedades de Superficie
19.
Adv Healthc Mater ; 10(6): e2001591, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33320448

RESUMEN

Imbalance of metal ions in the wound microenvironment is a key factor that leads to delayed wound healing. However, single metal administration to enhance wound repair is usually not enough due to the overlapping nature of the wound healing phases. Herein, a facile freeze-thawing strategy is developed to incorporate chitosan/ions hydrogel into medical gauzes to realize on-demand release of multiple ions to accelerate wound healing. In vitro study reveals that the gauzes can temporally release multiple metal ions on demand, and the released metal ions show effectiveness in killing bacteria and expediting cell migration. In vivo studies demonstrate that the metal ions loaded gauzes can efficiently enhance infected wound healing. Further histological analysis find that these metal ion-loaded gauzes accelerate wound healing by promoting granulation formation, collagen deposition and maturation, re-epithelization, angiogenesis, and inhibiting inflammation via regulating the expression of inflammatory factors (e.g., tumor necrosis factor-α) and polarization of macrophages. Thus, this novel metal ions delivery system has great potential in infected tissue repair and antibacterial applications.


Asunto(s)
Quitosano , Vendajes , Hidrogeles , Iones , Cicatrización de Heridas
20.
Biomater Sci ; 9(3): 882-891, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33241793

RESUMEN

Growth factors (GFs) have been well known for their therapeutic effects on wound healing. Due to their vulnerable biostability, biomaterial carriers are usually used to deliver GFs to maintain their bioactivity. Among the carriers, PEG hydrogels are the most widely applied. But the uncontrolled release of GFs and their immunogenicity dramatically retard the application of PEG hydrogels as carriers of GFs. Herein, FGF2 loaded zwitterionic sulfobetaine methacrylate (SBMA) hydrogels were developed, and it was revealed that these hydrogels were more effective in delivering FGF2 for wound healing than were PEG hydrogels. In vitro studies demonstrated that SBMA hydrogels could successfully prolong the release of FGF2, which effectively maintained the bioactivity of FGF2. Further in vivo investigation showed that SBMA hydrogels could efficiently accelerate wound regeneration by promoting granulation tissue formation, collagen deposition, cell proliferation and migration, reepithelialization and angiogenesis. All results validated that SBMA hydrogels were promising substituents of PEG hydrogels for delivering FGF2 for wound regeneration.


Asunto(s)
Portadores de Fármacos , Hidrogeles , Cicatrización de Heridas , Preparaciones de Acción Retardada , Péptidos y Proteínas de Señalización Intercelular , Repitelización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA