Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Med Virol ; 96(4): e29577, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572977

RESUMEN

Uncovering the immune response to an inactivated SARS-CoV-2 vaccine (In-Vac) and natural infection is crucial for comprehending COVID-19 immunology. Here we conducted an integrated analysis of single-cell RNA sequencing (scRNA-seq) data from serial peripheral blood mononuclear cell (PBMC) samples derived from 12 individuals receiving In-Vac compared with those from COVID-19 patients. Our study reveals that In-Vac induces subtle immunological changes in PBMC, including cell proportions and transcriptomes, compared with profound changes for natural infection. In-Vac modestly upregulates IFN-α but downregulates NF-κB pathways, while natural infection triggers hyperactive IFN-α and NF-κB pathways. Both In-Vac and natural infection alter T/B cell receptor repertoires, but COVID-19 has more significant change in preferential VJ gene, indicating a vigorous immune response. Our study reveals distinct patterns of cellular communications, including a selective activation of IL-15RA/IL-15 receptor pathway after In-Vac boost, suggesting its potential role in enhancing In-Vac-induced immunity. Collectively, our study illuminates multifaceted immune responses to In-Vac and natural infection, providing insights for optimizing SARS-CoV-2 vaccine efficacy.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Leucocitos Mononucleares , FN-kappa B , SARS-CoV-2 , Vacunas de Productos Inactivados , Inmunidad , Análisis de Secuencia de ARN , Anticuerpos Antivirales
2.
Cancers (Basel) ; 12(12)2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371368

RESUMEN

The crosstalk between cancer cells and adipocytes is critical for breast cancer progression. However, the molecular mechanisms underlying these interactions have not been fully characterized. In the present study, plasminogen activator inhibitor-1 (PAI-1) was found to be a critical effector of the metastatic behavior of breast cancer cells upon adipocyte coculture. Loss-of-function studies indicated that silencing PAI-1 suppressed cancer cell migration. Furthermore, we found that PAI-1 was closely related to the epithelial-mesenchymal transition (EMT) process in breast cancer patients. A loss-of-function study and a mammary orthotopic implantation metastasis model showed that PAI-1 promoted breast cancer metastasis by affecting the EMT process. In addition, we revealed that leptin/OBR mediated the regulation of PAI-1 through the interactions between adipocytes and breast cancer cells. Mechanistically, we elucidated that leptin/OBR further activated STAT3 to promote PAI-1 expression via miR-34a-dependent and miR-34a-independent mechanisms in breast cancer cells. In conclusion, our study suggests that targeting PAI-1 and interfering with its upstream regulators may benefit breast cancer patients.

3.
Phytomedicine ; 57: 117-128, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30668314

RESUMEN

BACKGROUND: Topotecan (TPT) is a Topo I inhibitor and shows obvious anti-cancer effects on gastric cancer. Cancer cells reprogram their metabolic pathways to increase nutrients uptake, which has already been a hallmark of cancer. But the effect of TPT on metabolism in gastric cancer remains unknown. PURPOSE: To investigate the effect of TPT on metabolism in gastric cancer. METHODS: ATP production was measured by ATP Assay kit. Glucose and glutamine uptake were measured by Glucose (HK) Assay Kit and Glutamine/Glutamate Determination Kit respectively. To detect glutathione (GSH) concentration and reactive oxygen species (ROS) generation, GSH and GSSG Assay Kit and ROS Assay Kit were adopted. Apoptosis rates, mitochondrial membrane potential (MMP) were determined by flow cytometry and protein levels were analyzed by immumohistochemical staining and western blotting. RESULTS: TPT increased ATP production. TPT promoted glucose uptake possibly via up-regulation of hexokinase 2 (HK2) or glucose transporter 1 (GLUT1) expression, while decreased glutamine uptake by down-regulation of ASCT2 expression. ASCT2 inhibitor GPNA and ASCT2 knockdown significantly suppressed the growth of gastric cancer cells. Inhibition of ASCT2 reduced glutamine uptake which led to decreased production of GSH and increased ROS level. ASCT2 knockdown induced apoptosis via the mitochondrial pathway and weakened anti-cancer effect of TPT. CONCLUSION: TPT inhibits glutamine uptake via down-regulation of ASCT2 which causes oxidative stress and induces apoptosis through the mitochondrial pathway. Moreover, TPT inhibits proliferation partially via ASCT2. These observations reveal a previously undescribed mechanism of ASCT2 regulated gastric cancer proliferation and demonstrate ASCT2 is a potential anti-cancer target of TPT.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/metabolismo , Antineoplásicos/farmacología , Antígenos de Histocompatibilidad Menor/metabolismo , Estrés Oxidativo/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Topotecan/farmacología , Sistema de Transporte de Aminoácidos ASC/genética , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Glutamina/metabolismo , Glutatión/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos BALB C , Antígenos de Histocompatibilidad Menor/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Terapia Molecular Dirigida/métodos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología
4.
Cell Commun Signal ; 16(1): 100, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30563531

RESUMEN

BACKGROUND: Adipocytes make up the major component of breast tissue, accounting for 90% of stromal tissue. Thus, the crosstalk between adipocytes and breast cancer cells may play a critical role in cancer progression. Adipocyte-breast cancer interactions have been considered important for the promotion of breast cancer metastasis. However, the specific mechanisms underlying these interactions are unclear. In this study, we investigated the mechanisms of adipocyte-mediated breast cancer metastasis. METHODS: Breast cancer cells were cocultured with mature adipocytes for migration and 3D matrix invasion assays. Next, lentivirus-mediated loss-of-function experiments were used to explore the function of lysyl hydroxylase (PLOD2) in breast cancer migration and adipocyte-dependent migration of breast cancer cells. The role of PLOD2 in breast cancer metastasis was further confirmed using orthotopic mammary fat pad xenografts in vivo. Clinical samples were used to confirm that PLOD2 expression is increased in tumor tissue and is associated with poor prognosis of breast cancer patients. Cells were treated with cytokines and pharmacological inhibitors in order to verify which adipokines were responsible for activation of PLOD2 expression and which signaling pathways were activated in vitro. RESULTS: Gene expression profiling and Western blotting analyses revealed that PLOD2 was upregulated in breast cancer cells following coculture with adipocytes; this process was accompanied by enhanced breast cancer cell migration and invasion. Loss-of-function studies indicated that PLOD2 knockdown suppressed cell migration and disrupted the formation of actin stress fibers in breast cancer cells and abrogated the migration induced by following coculture with adipocytes. Moreover, experiments performed in orthotopic mammary fat pad xenografts showed that PLOD2 knockdown could reduce metastasis to the lung and liver. Further, high PLOD2 expression correlated with poor prognosis of breast cancer patients. Mechanistically, adipocyte-derived interleukin-6 (IL-6) and leptin may facilitate PLOD2 upregulation in breast cancer cells and promote breast cancer metastasis in tail vein metastasis assays. Further investigation revealed that adipocyte-derived IL-6 and leptin promoted PLOD2 expression through activation of the JAK/STAT3 and PI3K/AKT signaling pathways. CONCLUSIONS: Our study reveals that adipocyte-derived IL-6 and leptin promote PLOD2 expression by activating the JAK/STAT3 and PI3K/AKT signaling pathways, thus promoting breast cancer metastasis.


Asunto(s)
Adipocitos/metabolismo , Neoplasias de la Mama/patología , Interleucina-6/metabolismo , Leptina/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Regulación hacia Arriba , Células 3T3-L1 , Adipoquinas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Quinasas Janus/metabolismo , Ratones , Metástasis de la Neoplasia , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/deficiencia , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA