Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Food Chem Toxicol ; 185: 114450, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38215961

RESUMEN

Fibrosis is the pathological basis for the clinical progression of benign prostatic hyperplasia (BPH). Prostatic fibrosis is an important risk factor in patients with BPH who experience lower urinary tract symptoms. Bisphenol A (BPA) is an environmental endocrine disruptor (EED) that causes prostate defects. The effects of BPA on the prostate were investigated in this study using mouse and human prostate cell models. BPA-induced mouse prostatic fibrosis is characterized by collagen deposition and an increase in hydroxyproline concentration. Furthermore, BPA-exposed prostatic stromal fibroblasts exosomes promote the epithelial-mesenchymal transition of epithelial cells. High-throughput RNA sequencing and functional enrichment analyses show that substantially altered mRNAs, lncRNAs and circRNAs play roles in cellular interactions and the hypoxia-inducible factor-1 signaling pathway. The results showed that exosomes participated in the pro-fibrogenic effects of BPA on the prostate by mediating communication between stromal and epithelial cells and triggering epithelial changes.


Asunto(s)
Compuestos de Bencidrilo , Exosomas , Fenoles , Hiperplasia Prostática , Masculino , Humanos , Ratones , Animales , Próstata , Hiperplasia Prostática/inducido químicamente , Hiperplasia Prostática/metabolismo , Exosomas/metabolismo , Epitelio/metabolismo , Epitelio/patología , Fibrosis
2.
Plants (Basel) ; 12(10)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37653893

RESUMEN

Benzoin is a pathologic exudation produced by plants of the family Styrax. It is secreted by traumatic resin ducts after injury, which are derived from parenchymal cells in secondary xylem by schizolysigeny. Some 63 chemical constituents have been isolated and identified from this resin, including balsamic acid esters, lignans and terpenoids. It has a long history of applications, including as incense along with olibanum, a flavor enhancer in the food industry, materials in the daily chemistry industry as well as therapeutic uses. Up to now, high-performance liquid chromatography (HPLC) and gas chromatography mass spectrometry (GC-MS) have been widely used in qualitative and quantitative analysis of benzoin. Other technologies, including near-infrared reflectance spectroscopy (NIR), proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) and Fourier-transform infrared spectroscopy (FT-IR), have also been used to distinguish different resins. Herein, this paper provides a comprehensive overview of the production process, phytochemistry, traditional uses and quality control of benzoin and looks to the future for promoting its further research and applications.

3.
Sci Rep ; 13(1): 2943, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36808137

RESUMEN

Benzoin is an incomplete lithified resin secreted from the trunk of the Styrax Linn. that is known as "semipetrified amber" and has been widely used in medicine due to its blood circulation-promoting and pain-relieving properties. However, the lack of an effective species identification method due to the numerous sources of benzoin resin and the difficulty of DNA extraction has led to the uncertainty of species of benzoin in the trade process. Here, we report the successful extraction of DNA from benzoin resin containing bark-like residues and the evaluation of commercially available benzoin species using molecular diagnostic techniques. By performing a BLAST alignment of ITS2 primary sequences and homology prediction analysis of ITS2 secondary structures, we found that commercially available benzoin species were derived from Styrax tonkinensis (Pierre) Craib ex Hart. and Styrax japonicus Sieb. et Zucc. of the genus Styrax Linn. In addition, some of the benzoin samples were mixed with plant tissues from other genera, accounting for 29.6%. Therefore, this study provides a new method to solve the problem of species identification of semipetrified amber benzoin using information from bark residues.


Asunto(s)
Ámbar , Medicina , Benzoína , Patología Molecular , Resinas de Plantas/química , Extractos Vegetales
4.
Chem Biodivers ; 19(12): e202200490, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36266258

RESUMEN

2-(2-Phenylethyl)chromone derivatives are regarded as key components in agarwood. An oxygen-containing heterocycle with a benzoannelated γ-pyrone moiety form the bioactive core of 2-(2-phenylethyl)chromones. With different substituents and positions, 2-(2-phenylethyl)chromone derivatives exhibit diverse biological properties, such as antioxidant, antimicrobial, neuroprotective, anti-inflammatory, and acetylcholinesterase inhibitory activities. In this review, we summarized the studies (from January 1976 to September 2021) on phytochemistry, bioactivity and quality control of 2-(2-phenylethyl)chromones. These studies aimed to clarify the chemical specificity, diversity and structure-activity relationship of 2-(2-phenylethyl)chromones. In addition, we assumed that diverse factors such as tree species, induction methods and formation time contribute to the chemical diversity of 2-(2-phenylethyl)chromones. Furthermore, this review contends that different types of 2-(2-phenylethyl)chromones should be utilized in the quality control methods of agarwood.


Asunto(s)
Cromonas , Thymelaeaceae , Cromonas/química , Acetilcolinesterasa , Thymelaeaceae/química , Flavonoides/farmacología , Flavonoides/química , Estructura Molecular
5.
Molecules ; 27(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35889407

RESUMEN

As a valuable medicinal herb and spice, agarwood is widely used in the fields of daily chemistry, traditional medicine, religion and literary collection. It mainly contains sesquiterpenes and 2-(2-phenylethyl)chromones, which are often used to soothe the body and mind, relieve anxiety, act as an antidepressant and treat insomnia and other mental disorders, presenting a good calming effect. This paper reviews the chemical composition of the essential oils of different sources of agarwood, as well as the progress of research on the sedative and tranquilizing pharmacological activity and mechanism of action of agarwood essential oil (AEO), and then analyzes the current problems of AEO research and its application prospects in the treatment of mental diseases.


Asunto(s)
Aceites Volátiles , Trastornos del Inicio y del Mantenimiento del Sueño , Thymelaeaceae , Ansiedad/tratamiento farmacológico , Depresión , Humanos , Aceites Volátiles/química , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Thymelaeaceae/química
6.
iScience ; 23(10): 101567, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33083734

RESUMEN

Specific recording, labeling, and spatiotemporal manipulating neurons are essential for neuroscience research. In this study, we developed a tripartite spatiotemporal gene induction system in C. elegans, which is based on the knockout of two transcriptional terminators (stops in short) by two different recombinases FLP and CRE. The recombinase sites (loxP and FRT) flanked stops after a ubiquitous promoter terminate transcription of target genes. FLP and CRE, induced by two promoters of overlapping expression, remove the stops (subsequent FLP/CRE-out). The system provides an "AND" gate strategy for specific gene expression in single types of cell(s). Combined with an inducible promoter or element, the system can control the spatiotemporal expression of genes in defined cell types, especially in cells or tissues lacking a specific promoter. This tripartite FLP/CRE-out gene expression system is a simple, labor- and cost-saving toolbox for cell type-specific and inducible gene expression in C. elegans.

7.
Sci Rep ; 8(1): 3020, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445226

RESUMEN

Ethanol is a widely used beverage and abused drug. Alcoholism causes severe damage to human health and creates serious social problems. Understanding the mechanisms underlying ethanol actions is important for the development of effective therapies. Alcohol has a wide spectrum of effects on physiological activities and behaviours, from sensitization to sedation and even intoxication with increasing concentrations. Animals develop tolerance to ethanol. However, the underlying mechanisms are not well understood. In Caenorhabditis elegans, NPR-1 negatively regulates the development of acute tolerance to ethanol. Here, using in vivo Ca2+ imaging, behavioural tests and chemogenetic manipulation, we show that the soluble guanylate cyclase complex GCY-35/GCY-36-TAX-2/TAX-4 signalling pathway in O2 sensory neurons positively regulates acute functional tolerance in npr-1 worms.


Asunto(s)
Tolerancia a Medicamentos/fisiología , Etanol/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , GMP Cíclico/metabolismo , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/fisiología , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Canales Iónicos/metabolismo , Oxígeno/metabolismo , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA