Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Compr Rev Food Sci Food Saf ; 23(5): e70007, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39223759

RESUMEN

The potato has recently attracted more attention as a promising protein source. Potato proteins are commonly extracted from potato fruit juice, a byproduct of starch production. Potato proteins are characterized by superior techno-functional properties, such as water solubility, gel-forming, emulsifying, and foaming properties. However, commercially isolated potato proteins are often denatured, leading to a loss of these functionalities. Extensive research has explored the influence of different conditions and techniques on the emulsifying capacity and stability of potato proteins. However, there has been no comprehensive review of this topic yet. This paper aims to provide an in-depth overview of current research progress on the emulsifying capacity and stability of potato proteins and peptides, discussing research challenges and future perspectives. This paper discusses genetic diversity in potato proteins and various methods for extracting proteins from potatoes, including thermal and acid precipitation, salt precipitation, organic solvent precipitation, carboxymethyl cellulose complexation, chromatography, and membrane technology. It also covers enzymatic hydrolysis for producing potato-derived peptides and methods for identifying potato protein-derived emulsifying peptides. Furthermore, it reviews the influence of factors, such as physicochemical properties, environmental conditions, and food-processing techniques on the emulsifying capacity and stability of potato proteins and their derived peptides. Finally, it highlights chemical modifications, such as acylation, succinylation, phosphorylation, and glycation to enhance emulsifying capacity and stability. This review provides insight into future research directions for utilizing potato proteins as sustainable protein sources and high-value food emulsifiers, thereby contributing to adding value to the potato processing industry.


Asunto(s)
Péptidos , Proteínas de Plantas , Solanum tuberosum , Solanum tuberosum/química , Proteínas de Plantas/química , Péptidos/química , Emulsionantes/química , Emulsiones/química , Manipulación de Alimentos/métodos , Estabilidad Proteica
2.
Angew Chem Int Ed Engl ; : e202408736, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107260

RESUMEN

The electrooxidation of catalyst surfaces is across various electrocatalytic reactions, directly impacting their activity, stability and selectivity. Precisely characterizing the electrooxidation on well-defined surfaces is essential to understanding electrocatalytic reactions comprehensively. Herein, we employed in situ Raman spectroscopy to monitor the electrooxidation process of palladium single crystal. Our findings reveal that the Pd surface's initial electrooxidation process involves forming *OH intermediate and ClO4- ions facilitate the deprotonation process, leading to the formation of PdOx. Subsequently, under deep electrooxidation potential range, the oxygen atoms within PdOx contribute to creating surface-bound peroxide species, ultimately resulting in oxygen generation. The adsorption strength of *OH and the coverage of ClO4- can be adjusted by the controllable electronic effect, resulting in different oxidation rates. This study offers valuable insights into elucidating the electrooxidation mechanisms underlying a range of electrocatalytic reactions, thereby contributing to the rational design of catalysts.

3.
Open Med (Wars) ; 19(1): 20240991, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091610

RESUMEN

Src-homology region 2 domain-containing phosphatase 1 (SHP-1) is considered an anti-inflammatory factor, but its role in chronic obstructive pulmonary disease (COPD) remains unknown. Herein, overexpression of SHP-1 was utilized to explore the functions of SHP-1 in COPD models established by stimulating 16HBE cells with cigarette smoke extracts (CSE) in vitro. SHP-1 was downregulated in both COPD patients and CES-treated 16HBE cells. SHP-1 overexpression reinforced cell viability and significantly prevented CSE-induced cell apoptosis in 16HBE cells. Furthermore, SHP-1 overexpression greatly reversed the CSE-induced migration, epithelial-mesenchymal transition (EMT), and pro-inflammatory factor production in 16HBE cells. In addition, CSE activated the P65 and PI3K/AKT pathways in 16HBE cells, which was also reversed by SHP-1 overexpression. Our findings indicated that SHP-1 alleviated CSE-induced EMT and inflammation in 16HBE cells, suggesting that SHP-1 regulated the development of COPD, and these functions may be linked to the inhibition of the PI3K/AKT pathway.

4.
Environ Toxicol ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082229

RESUMEN

Acrylamide (AAM), a compound extensively utilized in various industrial applications, has been reported to induce toxic effects across multiple tissues in living organisms. Despite its widespread use, the impact of AAM on ovarian function and the mechanisms underlying these effects remain poorly understood. Here, we established an AAM-exposed mouse toxicological model using 21 days of intragastric AAM administration. AAM exposure decreased ovarian coefficient and impaired follicle development. Further investigations revealed AAM would trigger apoptosis and disturb tricarboxylic acid cycle in ovarian tissue, thus affecting mitochondrial electron transport function. Moreover, AAM exposure decreased oocyte and embryo development potential, mechanically associated with pericentrin and phosphorylated Aurora A cluster failure, leading to meiotic spindle assembly defects. Collectively, these results suggest that AAM exposure may lead to apoptosis, glucose metabolic disorders, and mitochondrial dysfunction in ovary tissue, ultimately compromising oocyte quality.

5.
Rev Cardiovasc Med ; 25(5): 170, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39076496

RESUMEN

Background: Transseptal puncture (TSP) performed with the Brockenbrough (BRK) needle is technically demanding and carries potential risks. The back end of the percutaneous transluminal coronary angioplasty (PTCA) guidewire is blunt and flexible, with good support, it can puncture the right ventricle-free wall, which is thicker than the atrial-septum. The guidewire is thin and easy to manipulate. This study evaluated the performance of TSP with a PTCA guidewire and microcatheter without a needle. Methods: The back end of a PTCA guidewire was advanced into the Tiger (TIG) catheter, within the SL1 sheath, to puncture the fossa ovalis (FO) under fluoroscopy. Subsequently, the microcatheter was inserted into the left atrium (LA) above the guidewire, and the front end of the guidewire was exchanged in the LA. After the puncture site was confirmed by contrast, the TIG catheter and a 0.032 inch wire were advanced into the LA. Finally, the sheath, with the dilator, was advanced over the wire into the LA. The safety margin of this method was tested in a pig model. Results: The puncture was successful in all seven pigs tested with a puncture-to-sheath entry time of < 20 minutes and no procedure-related complications. The method was successfully used to perform a difficult TSP in a patient with an extremely tortuous inferior vena cava, in whom puncture with a BRK needle had repeatedly failed. Conclusions: Cardiologists may use the PTCA guidewire and microcatheter as an alternative to the needle while performing TSP in special conditions, such as an extremely tortuous inferior vena cava.

6.
Ren Fail ; 46(2): 2374449, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38973429

RESUMEN

OBJECTIVES: Geriatric Nutritional Risk Index (GNRI) is a new and simple index recently introduced to assess nutritional status, and its predictive value for clinical outcomes has been demonstrated in patients with chronic kidney disease. However, the association between the GNRI and prognosis has not been evaluated so far in patients with acute kidney injury (AKI), especially in those receiving continuous renal replacement therapy (CRRT). METHODS: A total of 1096 patients with severe AKI initiating CRRT were identified for inclusion in this retrospective observational study. Patients were divided into three groups according to GNRI tertiles, with tertile 1 as the reference. The outcomes of interest were the 28- and 90-days of all-cause mortality. The associations between GNRI and clinical outcomes were estimated using multivariate Cox proportional hazards model analysis. RESULTS: The overall mortality rates at 28- and 90-days were 61.6% (675/1096) and 71.5% (784/1096), respectively. After adjusting for multiple confounding factors, GNRI was identified as an independent prognostic factor for 28-days all-cause mortality (HR, 0.582; 95% CI, 0.467-0.727; p < .001 for tertile 3 vs. tertile 1) as well as 90-days all-cause mortality (HR, 0.540; 95% CI, 0.440-0.661; p < .001 for tertile 3 vs. tertile 1). The observed inverse associations were robust across subgroup analysis, and were more pronounced in elderly patients over 65 years of age. Finally, incorporating GNRI in a model with established risk factors might significantly improve its predictive power for the short-term death. CONCLUSIONS: GNRI is considered to be a useful prognostic factor in patients with severe AKI initiating CRRT, especially in elderly patients.


Asunto(s)
Lesión Renal Aguda , Evaluación Geriátrica , Evaluación Nutricional , Estado Nutricional , Humanos , Estudios Retrospectivos , Femenino , Anciano , Masculino , Lesión Renal Aguda/mortalidad , Lesión Renal Aguda/terapia , Anciano de 80 o más Años , Pronóstico , Persona de Mediana Edad , Factores de Riesgo , Modelos de Riesgos Proporcionales , Medición de Riesgo , Terapia de Reemplazo Renal Continuo , Índice de Severidad de la Enfermedad
7.
Eur Spine J ; 33(7): 2713-2720, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878173

RESUMEN

PURPOSE: To evaluate the actual change in clinical hip pain and hip migration after operation for non-ambulatory flaccid neuromuscular (NM) scoliosis and investigate whether there is an association between hip migration and coronal/sagittal pelvic tilt (CO-PT/SA-PT). PATIENTS AND METHODS: This retrospective, single-center, observational study evaluated a total of 134 patients with non-ambulatory flaccid neuromuscular scoliosis who underwent surgery performed by a single surgeon between 2003 and 2020, with at least 2 years of follow-up period. Operation procedures were conducted in two stages, beginning with L5-S1 anterior release followed by posterior fixation. Radiologic parameters were measured at preoperative, immediate postoperative, and last follow-up periods with clinical hip pain and clinical hip dislocation events. RESULTS: The significant improvements occurred in various parameters after correction surgery for NM scoliosis, containing Cobb's angle of major curve and CO-PT. However, Reimer's hip migration percentage (RMP) was increased on both side of hip (High side, 0.23 ± 0.16 to 0.28 ± 0.21; Low side, 0.20 ± 0.14 to 0.23 ± 0.18). Hip pain and dislocation events were also increased (Visual analog scale score, 2.5 ± 2.3 to 3.6 ± 2.6, P value < 0.05; dislocation, 6-12). Logistic regression analysis of the interactions between ΔRMP(High) and the change of sagittal pelvic tilt (ΔSA-PT) after correction reveals a significant negative association. (95% CI 1.003-1.045, P value = 0.0226). CONCLUSIONS: In cases of non-ambulatory flaccid NM scoliosis, clinical hip pain, and subluxation continued to deteriorate even after correction of CO-PT. There was a relationship between the decrease in SA-PT, and an increase in hip migration percentage on high side, indicating the aggravation of hip subluxation.


Asunto(s)
Luxación de la Cadera , Escoliosis , Humanos , Escoliosis/cirugía , Femenino , Masculino , Estudios Retrospectivos , Adolescente , Luxación de la Cadera/cirugía , Luxación de la Cadera/etiología , Luxación de la Cadera/diagnóstico por imagen , Niño , Fusión Vertebral/métodos , Adulto Joven
8.
Food Chem ; 451: 139408, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38735097

RESUMEN

Fruits are a rich source of polysaccharides, and an increasing number of studies have shown that polysaccharides from fruits have a wide range of biological functions. Here, we thoroughly review recent advances in the study of the bioactivities, structures, and structure-activity relationships of fruit polysaccharides, especially highlighting the structure-activity influencing factors such as extraction methods and chemical modifications. Different extraction methods cause differences in the primary structures of polysaccharides, which in turn lead to different polysaccharide biological activities. Differences in the degree of modification, molecular weight, substitution position, and chain conformation caused by chemical modification can all affect the biological activities of fruit polysaccharides. Furthermore, we summarize the applications of fruit polysaccharides in the fields of pharmacy and medicine, foods, cosmetics, and materials. The challenges and perspectives for fruit polysaccharide research are also discussed.


Asunto(s)
Frutas , Polisacáridos , Frutas/química , Polisacáridos/química , Polisacáridos/farmacología , Relación Estructura-Actividad , Humanos , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología
9.
Insights Imaging ; 15(1): 121, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763985

RESUMEN

OBJECTIVES: To develop an interactive, non-invasive artificial intelligence (AI) system for malignancy risk prediction in cystic renal lesions (CRLs). METHODS: In this retrospective, multicenter diagnostic study, we evaluated 715 patients. An interactive geodesic-based 3D segmentation model was created for CRLs segmentation. A CRLs classification model was developed using spatial encoder temporal decoder (SETD) architecture. The classification model combines a 3D-ResNet50 network for extracting spatial features and a gated recurrent unit (GRU) network for decoding temporal features from multi-phase CT images. We assessed the segmentation model using sensitivity (SEN), specificity (SPE), intersection over union (IOU), and dice similarity (Dice) metrics. The classification model's performance was evaluated using the area under the receiver operator characteristic curve (AUC), accuracy score (ACC), and decision curve analysis (DCA). RESULTS: From 2012 to 2023, we included 477 CRLs (median age, 57 [IQR: 48-65]; 173 men) in the training cohort, 226 CRLs (median age, 60 [IQR: 52-69]; 77 men) in the validation cohort, and 239 CRLs (median age, 59 [IQR: 53-69]; 95 men) in the testing cohort (external validation cohort 1, cohort 2, and cohort 3). The segmentation model and SETD classifier exhibited excellent performance in both validation (AUC = 0.973, ACC = 0.916, Dice = 0.847, IOU = 0.743, SEN = 0.840, SPE = 1.000) and testing datasets (AUC = 0.998, ACC = 0.988, Dice = 0.861, IOU = 0.762, SEN = 0.876, SPE = 1.000). CONCLUSION: The AI system demonstrated excellent benign-malignant discriminatory ability across both validation and testing datasets and illustrated improved clinical decision-making utility. CRITICAL RELEVANCE STATEMENT: In this era when incidental CRLs are prevalent, this interactive, non-invasive AI system will facilitate accurate diagnosis of CRLs, reducing excessive follow-up and overtreatment. KEY POINTS: The rising prevalence of CRLs necessitates better malignancy prediction strategies. The AI system demonstrated excellent diagnostic performance in identifying malignant CRL. The AI system illustrated improved clinical decision-making utility.

10.
Chirality ; 36(5): e23674, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38699859

RESUMEN

The separation of chiral drugs continues to pose a significant challenge. However, in recent years, the emergence of membrane-based chiral separation has shown promising effectiveness due to its environmentally friendly, energy-efficient, and cost-effective characteristics. In this study, we prepared chiral composite membrane via interfacial polymerization (IP), utilizing ß-cyclodextrin (ß-CD) and piperazine (PIP) as mixed monomers in the aqueous phase. The chiral separation process was facilitated by ß-CD, serving as a chiral selective agent. The resulting membrane were characterized using SEM, FT-IR, and XPS. Subsequently, the chiral separation performance of the membrane for DL-tryptophan (Trp) was investigated. Lastly, the water flux, dye rejection, and stability of the membrane were also examined. The results showed that the optimized chiral PIP0.5ß-CD0.5 membrane achieved an enantiomeric excess percentage (ee%) of 43.0% for D-Trp, with a solute flux of 66.18 nmol·cm-2·h-1, and maintained a good chiral separation stability. Additionally, the membrane demonstrated positive performance in the selective separation of mixed dyes, allowing for steady operation over a long period of time. This study offers fresh insights into membrane-based chiral separations.

11.
Chirality ; 36(5): e23672, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693625

RESUMEN

Hydroxychloroquine (HCQ), 2-([4-([7-Chloro-4-quinolyl]amino)pentyl]ethylamino)ethanol, exhibited significant biological activity, while its side effects cannot be overlooked. The RP-HPLC enantio-separation was investigated for cost-effective and convenient optical purity analysis of HCQ. The thermodynamic resolution of Rac-HCQ, driven by enthalpy and entropy, was achieved on the C18 column using Carboxymethyl-ß-cyclodextrin (CM-ß-CD) as the chiral mobile phase agent (CMPA). The effects of CCM-ß-CD, pH, and triethylamine (TEA) V% on the enantio-separation process were explored. Under the optimum conditions at 24°C, the retention times for the two enantiomers were t R 1 = 29.39 min $$ {t}_{R1}=29.39\ \min $$ and t R 2 = 32.42 min $$ {t}_{R2}=32.42\ \min $$ , resulting in R s = 1.87 $$ {R}_s=1.87 $$ . The resolution via diastereomeric salt formation of Rac-HCQ was developed to obtain the active pharmaceutical ingredient of single enantiomer S-HCQ. Di-p-Anisoyl-L-Tartaric Acid (L-DATA) was proved effective as the resolution agent for Rac-HCQ. Surprisingly, it was found that refluxing time was a key fact affecting the resolution efficiency, which meant the kinetic dominate during the process of the resolution. Four factors-solvent volume, refluxing time, filtration temperature, and molar ratio-were optimized using the single-factor method and the response surface method. Two cubic models were established, and the reliability was subsequently verified. Under the optimal conditions, the less soluble salt of 2L-DATA:S-HCQ was obtained with a yield of 96.9% and optical purity of 63.0%. The optical purity of this less soluble salt increases to 99.0% with a yield of 74.2% after three rounds recrystallization.


Asunto(s)
Hidroxicloroquina , Hidroxicloroquina/química , Estereoisomerismo , Cromatografía Líquida de Alta Presión/métodos , Concentración de Iones de Hidrógeno , beta-Ciclodextrinas/química , Cromatografía de Fase Inversa/métodos , Etilaminas/química , Termodinámica , Sales (Química)/química
12.
J Proteome Res ; 23(5): 1713-1724, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38648079

RESUMEN

Non-small-cell lung cancer (NSCLC), a common malignant tumor, requires deeper pathogenesis investigation. Autophagy is an evolutionarily conserved lysosomal degradation process that is frequently blocked during cancer progression. It is an urgent need to determine the novel autophagy-associated regulators in NSCLC. Here, we found that pirin was upregulated in NSCLC, and its expression was positively correlated with poor prognosis. Overexpression of pirin inhibited autophagy and promoted NSCLC proliferation. We then performed data-independent acquisition-based quantitative proteomics to identify the differentially expressed proteins (DEPs) in pirin-overexpression (OE) or pirin-knockdown (KD) cells. Among the pirin-regulated DEPs, ornithine decarboxylase 1 (ODC1) was downregulated in pirin-KD cells while upregulated along with pirin overexpression. ODC1 depletion reversed the pirin-induced autophagy inhibition and pro-proliferation effect in A549 and H460 cells. Immunohistochemistry showed that ODC1 was highly expressed in NSCLC cancer tissues and positively related with pirin. Notably, NSCLC patients with pirinhigh/ODC1high had a higher risk in terms of overall survival. In summary, we identified pirin and ODC1 as a novel cluster of prognostic biomarkers for NSCLC and highlighted the potential oncogenic role of the pirin/ODC1/autophagy axis in this cancer type. Targeting this pathway represents a possible therapeutic approach to treat NSCLC.


Asunto(s)
Autofagia , Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Progresión de la Enfermedad , Neoplasias Pulmonares , Ornitina Descarboxilasa , Femenino , Humanos , Masculino , Células A549 , Autofagia/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Ornitina Descarboxilasa/metabolismo , Ornitina Descarboxilasa/genética , Pronóstico , Regulación hacia Arriba
13.
Talanta ; 274: 125981, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583325

RESUMEN

Mass spectrometric analysis of non-volatile salts containing samples remains challenging due to salt-induced ion suppression and contamination. This challenge is even more pronounced for a liquid chromatography-mass spectrometry analysis, where the accumulation of salts in the transmission system poses an ongoing problem. In this study, a novel thermal assisted recrystallization ionization mass spectrometry (TARI-MS) device was developed to achieve efficient on-line desalting and prolonged analysis of saline samples. The core component of this device was a heated plate positioned between the electrospray unit and the MS inlet. The desalting mechanism was demonstrated as the spontaneous separation of target molecules from salts during the "crystallization" process. After optimization, the angle between the nebulizer and the heated plate was 45°; the distance between the front end of the heated plate and the MS inlet was 2 mm; the distance between the front edge of the heated plate and the center of the sample spray projected onto the heating plate was 3 mm; the distance between the emitter of nebulizer and the heated plate was 3 mm. TARI-MS realized direct analysis of eight drugs dissolved in eight commonly used non-volatile salts solutions (up to 0.5 mol/L). The high sensitivity, repeatability, linearity, accuracy, and intra- and inter-day precision of TARI-MS confirm its reliability as a robust tool for the analysis of saline samples. Furthermore, TARI-MS allowed continuous analysis of salty eluates of LC for up to nearly 1 h without maintenance and verified the feasibility of LC-MS analysis through detecting a five-drug mixture and a crude aripiprazole product. Finally, six impurities in the crude aripiprazole product were successfully detected by LC-TARI-MS. The established method holds promise for applications across academic and pharmaceutical domains.

14.
Korean J Physiol Pharmacol ; 28(3): 229-237, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682171

RESUMEN

Cough is a common symptom of several respiratory diseases. However, frequent coughing from acute to chronic often causes great pain to patients. It may turn into cough variant asthma, which seriously affects people's quality of life. For cough treatment, it is dominated by over-the-counter antitussive drugs, such as asmeton, but most currently available antitussive drugs have serious side effects. Thus, there is a great need for the development of new drugs with potent cough suppressant. BALB/c mice were used to construct mice model with cough to investigate the pharmacological effects of pectolinarigenin (PEC). Hematoxylin-eosin and Masson staining were used to assess lung injury and airway remodeling, and ELISA was used to assess the level of inflammatory factor release. In addition, inflammatory cell counts were measured to assess airway inflammation. Airway hyperresponsiveness assay was used to assess respiratory resistance in mice. Finally, we used Western blotting to explore the potential mechanisms of PEC. We found that PEC could alleviate lung tissue injury and reduce the release of inflammatory factors, inhibit of cough frequency and airway wall collagen deposition in mice model with cough. Meanwhile, PEC inhibited the Ras/ERK/c-Fos pathway to exhibit antitussive effect. Therefore, PEC may be a potential drug for cough suppression.

15.
Mol Med Rep ; 29(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38516760

RESUMEN

Pirarubicin (THP) is one of the most commonly used antineoplastic drugs in clinical practice. However, its clinical application is limited due to its toxic and heart­related side effects. It has been reported that oxidative stress, inflammation and apoptosis are closely associated with cardiotoxicity caused by pirarubicin (CTP). Additionally, it has also been reported that scutellarein (Sc) exerts anti­inflammatory, antioxidant, cardio­cerebral vascular protective and anti­apoptotic properties. Therefore, the present study aimed to investigate the effect of food therapy with Sc on CTP and its underlying molecular mechanism using echocardiography, immunofluorescence, western blot, ROS staining, and TUNEL staining. The in vivo results demonstrated that THP was associated with cardiotoxicity. Additionally, abnormal changes in the expression of indicators associated with oxidative stress, ferroptosis and apoptosis were observed, which were restored by Sc. Therefore, it was hypothesized that CTP could be associated with oxidative stress, ferroptosis and apoptosis. Furthermore, the in vitro experiments showed that Sc and the NADPH oxidase 2 (NOX2) inhibitor, GSK2795039 (GSK), upregulated glutathione peroxidase 4 (GPX4) and inhibited THP­induced oxidative stress, apoptosis and ferroptosis. However, cell treatment with the ferroptosis inhibitor, ferrostatin­1, or inducer, erastin, could not significantly reduce or promote, respectively, the expression of NOX2. However, GSK significantly affected ferroptosis and GPX4 expression. Overall, the results of the present study indicated that food therapy with Sc ameliorated CTP via inhibition of apoptosis and ferroptosis through regulation of NOX2­induced oxidative stress, thus suggesting that Sc may be a potential therapeutic drug against CTP.


Asunto(s)
Aminopiridinas , Apigenina , Cardiotoxicidad , Doxorrubicina , Ferroptosis , Sulfonamidas , Animales , Ratas , Apigenina/farmacología , Apigenina/uso terapéutico , Apoptosis/efectos de los fármacos , Doxorrubicina/análogos & derivados , Doxorrubicina/toxicidad , Ferroptosis/efectos de los fármacos , NADPH Oxidasa 2/efectos de los fármacos , NADPH Oxidasa 2/genética , Estrés Oxidativo/efectos de los fármacos
16.
Bioresour Technol ; 397: 130508, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431057

RESUMEN

C. pyrenoidosa, a species of microalgae, has been recognized as a viable protein source for human consumption. The primary challenges in this context are the development of an efficient extraction process and the valorization of the resultant waste streams. This study, situated within the paradigm of circular economy, presents an innovative extraction approach that achieved a protein extraction efficiency of 62 %. The extracted protein exhibited remarkable oil-water emulsifying performances, such as uniform morphology with high creaming stability, suggesting a sustainable alternative to conventional emulsifiers. Additionally, hydrothermal liquefaction technique was employed for converting the residual biomass and waste solution from the extraction process into biocrude. A biocrude yield exceeding 40 wt%, characterized by a carbon content of 73 % and a higher heating value of 36 MJ/kg, were obtained. These findings demonstrate the promising potential of microalgae biorefinery, which is significant for paving toward circular economy and zero-waste society.


Asunto(s)
Chlorella , Microalgas , Humanos , Microalgas/metabolismo , Biocombustibles , Carbono/metabolismo , Proteínas/metabolismo , Biomasa
17.
Cancer Res ; 84(11): 1872-1888, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38471084

RESUMEN

Dysregulation of cholesterol homeostasis is implicated in the development and progression of hepatocellular carcinoma (HCC) that is characterized by intrahepatic and early extrahepatic metastases. A better understanding of the underlying mechanisms regulating cholesterol metabolism in HCC could help identify strategies to circumvent the aggressive phenotype. Here, we found that high expression of intracellular SPARC (secreted protein acidic and rich in cysteine) was significantly associated with elevated cholesterol levels and an enhanced invasive phenotype in HCC. SPARC potentiated cholesterol accumulation in HCC cells during tumor progression by stabilizing the ApoE protein. Mechanistically, SPARC competitively bound to ApoE, impairing its interaction with the E3 ligase tripartite motif containing 21 (TRIM21) and preventing its ubiquitylation and subsequent degradation. ApoE accumulation led to cholesterol enrichment in HCC cells, stimulating PI3K-AKT signaling and inducing epithelial-mesenchymal transition (EMT). Importantly, sorafenib-resistant HCC cells were characterized by increased expression of intracellular SPARC, elevated cholesterol levels, and enhanced invasive capacity. Inhibiting SPARC expression or reducing cholesterol levels enhanced the sensitivity of HCC cells to sorafenib treatment. Together, these findings unveil interplay between SPARC and cholesterol homeostasis. Targeting SPARC-triggered cholesterol-dependent oncogenic signaling is a potential therapeutic strategy for advanced HCC. SIGNIFICANCE: Intracellular SPARC boosts cholesterol availability to fuel invasion and drug resistance in hepatocellular carcinoma, providing a rational approach to improve the treatment of advanced liver cancer.


Asunto(s)
Apolipoproteínas E , Carcinoma Hepatocelular , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Neoplasias Hepáticas , Osteonectina , Sorafenib , Animales , Humanos , Masculino , Ratones , Antineoplásicos/farmacología , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Colesterol/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Ratones Desnudos , Invasividad Neoplásica , Osteonectina/metabolismo , Osteonectina/genética , Transducción de Señal/efectos de los fármacos , Sorafenib/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Food Chem X ; 21: 101149, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312490

RESUMEN

This study investigated the grafting chlorogenic acid (CA) onto myosin, utilizing various techniques including conventional method, ultrasound, microwave, and combination of ultrasound and microwave (UM). The grafting efficiency was as follows: conventional method < microwave < ultrasound < UM. The UM technique manifested the highest CA-binding capacity (80.26 µmol/g myosin) through covalent bonding, and a much shorter time was required for conjugation than conventional method. The conjugation of polyphenol significantly increased the solubility of myosin with reduced aggregation behavior, which was accompanied by structural alterations from ordered structures (α-helix and ß-sheet) to disordered forms. The emulsion stabilized by UM-myosin-CA conjugate exhibited the most homogeneous microstructure with favorable creaming stability. Moreover, the resulting emulsion presented strong oxidation resistance and storage stability. These results illustrate the promising potential of employing CA-grafted myosin, especially when processed using the UM technique, in the development of highly efficient emulsifiers.

19.
Sci Rep ; 14(1): 100, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167599

RESUMEN

Lewis lung carcinoma (LLC), as a widely used preclinical cancer model, has still not been genetically and genomically characterized. Here, we performed a whole-exome sequencing analysis on the LLC cell line to elucidate its molecular characteristics and etiologies. Our data showed that LLC originated from a male mouse belonging to C57BL/6L (a transitional strain between C57BL/6J and C57BL/6N) and contains substantial somatic SNV and InDel mutations (> 20,000). Extensive regional mutation clusters are present in its genome, which were caused mainly by the mutational processes underlying the SBS1, SBS5, SBS15, SBS17a, and SBS21 signatures during frequent structural rearrangements. Thirty three deleterious mutations are present in 30 cancer genes including Kras, Nras, Trp53, Dcc, and Cacna1d. Cdkn2a and Cdkn2b are biallelically deleted from the genome. Five pathways (RTK/RAS, p53, cell cycle, TGFB, and Hippo) are oncogenically deregulated or affected. The major mutational processes in LLC include chromosomal instability, exposure to metabolic mutagens, spontaneous 5-methylcytosine deamination, defective DNA mismatch repair, and reactive oxygen species. Our data also suggest that LLC is a lung cancer similar to human lung adenocarcinoma. This study lays a molecular basis for the more targeted application of LLC in preclinical research.


Asunto(s)
Adenocarcinoma , Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Masculino , Humanos , Ratones , Animales , Adenocarcinoma/patología , Secuenciación del Exoma , Ratones Endogámicos C57BL , Mutación , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas p21(ras)/genética
20.
Sci Total Environ ; 914: 169823, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199358

RESUMEN

To valorize the biomass and organic waste, hydrothermal carbonization (HTC) stands out as a highly efficient and promising pathway given its intrinsic advantages over other thermochemical processes. Hydrochar, as the main product obtained from HTC, is widely applied as a fuel source and soil conditioner. Aside from these applications, hydrochar can be either directly used or modified as bio-adsorbents for environmental remediation. This potential arises from its tunable surface chemistry and its suitability to act as a precursor for activated or engineered carbon. In view of the importance of this topic, this review offers a thorough examination of the research progress for using hydrochar and its modified forms to remove organic dyes (cationic and anionic dyes), heavy metals, herbicides/pesticides, pharmaceuticals, and CO2. The review also sheds light on the fundamental chemistry involved in HTC of biomass and the major analytical techniques applied for understanding surface chemistry of hydrochar and modified hydrochar. The knowledge gaps and potential hurdles are identified to highlight the challenges and prospects of this research field with a summary of the key findings from this review. Overall, this article provides valuable insights and directives and pinpoints the areas meriting further investigation in the application potential of hydrochar in wastewater management and CO2 capture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA