Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
NPJ Clim Atmos Sci ; 7(1): 207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246663

RESUMEN

Oxidized Organic Aerosol (OOA), a major component of fine atmospheric particles, impacts climate and human health. Previous experiments and atmospheric models emphasize the importance of nocturnal OOA formation from NO3· oxidation of biogenic VOCs. This seasonal study extends the understanding by showing that nocturnal oxidation of biomass-burning emissions can account for up to half of total OOA production in fall and winter. It is the first to distinguish nocturnal OOA characteristics from daytime OOA across all seasons using bulk aerosol measurements. Summer observations of nocturnal OOA align well with regional chemistry transport model predictions, but discrepancies in other seasons reveal a common model deficiency in representing biomass-burning emissions and their nocturnal oxidation. This study underscores the significance of near-ground nocturnal OOA production, proposes a method to differentiate it using bulk aerosol measurements, and suggests model optimization strategies. These findings enhance the understanding and prediction of nighttime OOA formation.

2.
Sci Total Environ ; 918: 170512, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38286278

RESUMEN

Wintertime fine particle (PM2.5) pollution remains to be perplexing air quality problems in many parts of China. In this study, PM2.5 compositions and aerosol acidity at different pollution levels at an urban cite in the southwest China's Sichuan Basin were investigated during a sustained winter haze episode. Organic matter was the most abundant component of PM2.5, followed by nitrate, sulfate and ammonium. Shares of organic aerosol in PM2.5 mass decreased with the elevated PM2.5 levels, while the enhancements of sulfate and secondary organic aerosol were much less than that of nitrate and ammonium during heavy pollution with increased ratios of nitrate to sulfate, implying a significant role of nitrate in the haze formation. Results also suggest the nighttime chemistry might contribute substantially to the formation of nitrate under severe pollutions. The daily average aerosol pH showed a decreasing trend with the elevated levels of PM2.5, and this increased aerosl acidity was mainly due to the fast rising secondary inorganic aerosol (SIA) concentration, with the increase in hydronium ion concentration in air (Hair+) surpassing the dilution effect of elevated aerosol liquid water content (LWC). Thermodynamic model calculations revealed that the air environment was NH3-rich with total NHx (NH3 + NH4+) greater than required NHx, and the aerosol pH exponentially declined with the decreasing excess NHx (p < 0.01). This study demonstrated that under air stagnation and NH3-rich environment during winter, the raised relative humidity (RH) would lead to an increase in LWC and thereby facilitate the aqueous chemistry processes with the neutralization capacity of NH3 to form sulfate and nitrate, which would further increase the LWC and lower the pH. This self-amplifying SIA formation might be crucial to the severe PM2.5 pollution and haze events during winter, and therefore cutting both NOx and NH3 emissions would benefit stopping the self-amplification.

3.
Sci Total Environ ; 838(Pt 3): 156431, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35660611

RESUMEN

Straw burning comprises more than 30% of all types of burned biomass in Asia, while the estimation of the emitted aerosols' direct radiative forcing effect suffers from large uncertainties, especially when atmospheric aging processes are considered. In this study, the light absorption properties of primary and aged straw burning aerosols in open fire were characterized at 7 wavelengths ranging from 370 nm to 950 nm in a chamber. The primary rice, corn and wheat straw burning bulk aerosols together had a mass absorption efficiency (MAE) of 2.43 ± 1.36 m2 g-1 at 520 nm and an absorption Ångström exponent (AAE) of 1.93 ± 0.71, while the primary sorghum straw burning bulk aerosols were characterized by a relatively lower MAE of 0.95 ± 0.54 m2 g-1 and a higher AAE of 4.80 ± 0.68. Both the MAE and AAE of primary aerosols can be well parameterized by the (PM-BC)/BC ratio (in wt.). The MAE of black carbon (BC) increased by 11-190% during photoreactions equivalent to 16-60 h of atmospheric aging, which was positively correlated with the (PM-BC)/(BC) ratio. The MAE of organic aerosols first slightly increased or leveled off, and then decreased. Specifically, at 370 nm, the first growth/plateau stage lasted until OH exposure reached 0.47-1.29 × 1011 molecule cm-3 s, and the following period exhibited decay rates of 1.0-2.8 × 10-12 cm3 molecule-1 s-1 against the OH radical, corresponding to half-lives of 46-134 h in a typical ambient condition. During photoreactions, competition among the lensing effect, growth/bleach of organic chromophores, and particle mass and size growth complicated the evolution of the direct radiative forcing effect. It is concluded that rice and corn straw burning aerosols maintained a warming effect after aging, while the cooling effect of fresh sorghum straw burning aerosols increased with aging.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , Carbono/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Hollín/análisis
4.
Environ Sci Technol ; 56(8): 4816-4827, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35384654

RESUMEN

Secondary organic aerosols (SOAs) affect incoming solar radiation by interacting with light at ultraviolet and visible wavelength ranges. However, the relationship between the chemical composition and optical properties of SOA is still not well understood. In this study, the complex refractive index (RI) of SOA produced from OH oxidation of naphthalene in the presence of nitrogen oxides (NOx) was retrieved online in the wavelength range of 315-650 nm and the bulk chemical composition of the SOA was characterized by an online high-resolution time-of-flight mass spectrometer. In addition, the molecular-level composition of brown carbon chromophores was determined using high-performance liquid chromatography coupled to a photodiode array detector and a high-resolution mass spectrometer. The real part of the RI of the SOA increases with both the NOx/naphthalene ratio and aging time, likely due to the increased mean polarizability and decreased molecular weight due to fragmentation. Highly absorbing nitroaromatics (e.g., C6H5NO4, C7H7NO4, C7H5NO5, C8H5NO5) produced under higher NOx conditions contribute significantly to the light absorption of the SOA. The imaginary part of the RI linearly increases with the NOx/VOCs ratio due to the formation of nitroaromatic compounds. As a function of aging, the imaginary RI increases with the O/C ratio (slope = 0.024), mainly attributed to the achieved higher NOx/VOCs ratio, which favors the formation of light-absorbing nitroaromatics. The light-absorbing enhancement is not as significant with extensive aging as it is under a lower aging time due to the opening of aromatic rings by reactions.


Asunto(s)
Naftalenos , Óxidos de Nitrógeno , Aerosoles/química , Carbono/química , Oxidación-Reducción
5.
Environ Sci Technol ; 56(8): 4795-4805, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35235293

RESUMEN

Isoprene is the most abundant precursor of global secondary organic aerosol (SOA). The epoxide pathway plays a critical role in isoprene SOA (iSOA) formation, in which isoprene epoxydiols (IEPOX) and/or hydroxymethyl-methyl-α-lactone (HMML) can react with nucleophilic sulfate and water producing isoprene-derived organosulfates (iOSs) and oxygen-containing tracers (iOTs), respectively. This process is complicated and highly influenced by anthropogenic emissions, especially in the polluted urban atmospheres. In this study, we took a 1-year measurement of the paired iOSs and iOTs formed through the IEPOX and HMML pathways at the three urban sites from northern to southern China. The annual average concentrations of iSOA products at the three sites ranged from 14.6 to 36.5 ng m-3. We found that the nucleophilic-addition reaction of isoprene epoxides with water dominated over that with sulfate in the polluted urban air. A simple set of reaction rate constant could not fully describe iOS and iOT formation everywhere. We also found that the IEPOX pathway was dominant over the HMML pathway over urban regions. Using the kinetic data of IEPOX to estimate the reaction parameters of HMML will cause significant underestimation in the importance of HMML pathway. All these findings provide insights into iSOA formation over polluted areas.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Epoxi , Aerosoles/análisis , Butadienos , Hemiterpenos , Pentanos , Sulfatos , Agua
6.
Environ Sci Technol ; 56(6): 3340-3353, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35231168

RESUMEN

We investigate the chemical composition of organic light-absorbing components, also known as brown carbon (BrC) chromophores, formed in a proxy of anthropogenic secondary organic aerosol generated from the photooxidation of naphthalene (naph-SOA) in the absence and presence of NOx. High-performance liquid chromatography equipped with a photodiode array detector and electrospray ionization high-resolution mass spectrometer is employed to characterize naph-SOA and its BrC components. We provide molecular-level insights into the chemical composition and optical properties of individual naph-SOA components and investigate their BrC relevance. This work reveals the formation of strongly absorbing nitro-aromatic chromophores under high-NOx conditions and describes their degradation during atmospheric aging. NOx addition enhanced the light absorption of naph-SOA while reducing wavelength-dependence, as seen by the mass absorption coefficient (MAC) and absorption Ångström exponent (AAE). Optical parameters of naph-SOA generated under low- and high-NOx conditions showed a range of values from MACOM 405nm ∼ 0.12 m2 g-1 and AAE300-450nm ∼ 8.87 (low-NOx) to MACOM 405nm ∼ 0.19 m2 g-1 and AAE300-450nm ∼ 7.59 (high-NOx), consistent with "very weak" and "weak" BrC optical classes, respectively. The weak-BrC class is commonly attributed to biomass smoldering emissions, which appear to have optical properties comparable with the naph-SOA. Molecular chromophores contributing to naphthalene BrC absorption were identified with substantial nitro-aromatics, indicating that these species may be used as source-specific markers of BrC related to the anthropogenic emissions.


Asunto(s)
Contaminantes Atmosféricos , Carbono , Aerosoles/química , Contaminantes Atmosféricos/análisis , Biomasa , Carbono/química , Naftalenos
7.
Environ Int ; 157: 106801, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34343933

RESUMEN

Biomass burning (BB) is an important source of primary organic aerosols (POA). These POA contain a significant fraction of semivolatile organic compounds, and can release them into the gas phase during the dilution process in transport. Such evaporated compounds were termed "secondarily evaporated BB organic gases (SBB-OGs)" to distinguish them from the more studied primary emissions. SBB-OGs contribute to the formation of secondary organic aerosols (SOA) through reactions with atmospheric oxidants, and thus may influence human health and the Earth's radiation budget. In this study, tar materials collected from wood pyrolysis were taken as proxies for POA from smoldering-phase BB and were used to release SBB-OGs constantly in the lab. OH-initiated oxidation of the SBB-OGs in the absence of NOx was investigated using an oxidation flow reactor, and the chemical, optical, and toxicological properties of SOA were comprehensively characterized. Carbonyl compounds were the most abundant species in identified SOA species. Human lung epithelial cells exposed to an environmentally relevant dose of the most aged SOA did not exhibit detectable cell mortality. The oxidative potential of SOA was characterized with the dithiothreitol (DTT) assay, and its DTT consumption rate was 15.5 ± 0.5 pmol min-1 µg-1. The SOA present comparable light scattering to BB-POA, but have lower light absorption with imaginary refractive index less than 0.01 within the wavelength range of 360-600 nm. Calculations based on Mie theory show that pure airborne SOA with atmospherically relevant sizes of 50-400 nm have a cooling effect; when acting as the coating materials, these SOA can counteract the warming effect brought by airborne black carbon aerosol.


Asunto(s)
Contaminantes Atmosféricos , Gases , Aerosoles/análisis , Anciano , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Biomasa , Clima , Humanos , Hollín
8.
Environ Sci Technol ; 55(5): 2878-2889, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33596062

RESUMEN

Nighttime oxidation of biogenic volatile organic compounds (BVOCs) by nitrate radicals (NO3·) represents one of the most important interactions between anthropogenic and natural emissions, leading to substantial secondary organic aerosol (SOA) formation. The direct climatic effect of such SOA cannot be quantified because its optical properties and atmospheric fate are poorly understood. In this study, we generated SOA from the NO3· oxidation of a series BVOCs including isoprene, monoterpenes, and sesquiterpenes. The SOA were subjected to comprehensive online and offline chemical composition analysis using high-resolution mass spectrometry and optical properties measurements using a novel broadband (315-650 nm) cavity-enhanced spectrometer, which covers the wavelength range needed to understand the potential contribution of the SOA to direct radiative forcing. The SOA contained a significant fraction of oxygenated organic nitrates (ONs), consisting of monomers and oligomers that are responsible for the detected light absorption in the 315-400 nm range. The SOA created from ß-pinene and α-humulene was further photochemically aged in an oxidation flow reactor. The SOA has an atmospheric photochemical bleaching lifetime of >6.2 h, indicating that some of the ONs in the SOA may serve as atmosphere-stable nitrogen oxide sinks or reservoirs and will absorb and scatter incoming solar radiation during the daytime.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Aerosoles , Contaminantes Atmosféricos/análisis , Cromatografía de Gases y Espectrometría de Masas , Monoterpenos , Nitratos , Óxidos de Nitrógeno
9.
Environ Sci Technol ; 55(4): 2511-2521, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33499599

RESUMEN

This study provides molecular insights into the light absorption properties of biomass burning (BB) brown carbon (BrC) through the chemical characterization of tar condensates generated from heated wood pellets at oxidative and pyrolysis conditions. Both liquid tar condensates separated into "darker oily" and "lighter aqueous" immiscible phases. The molecular composition of these samples was investigated using reversed-phase liquid chromatography coupled with a photodiode array detector and a high-resolution mass spectrometer. The results revealed two sets of BrC chromophores: (1) common to all four samples and (2) specific to the "oily" fractions. The common BrC chromophores consist of polar, monoaromatic species. The oil-specific BrC chromophores include less-polar and nonpolar polyaromatic compounds. The most-light-absorbing pyrolysis oily phase (PO) was aerosolized and size-separated using a cascade impactor to compare the composition and optical properties of the bulk versus the aerosolized BrC. The mass absorption coefficient (MAC300-500 nm) of aerosolized PO increased compared to that of the bulk, due to gas-phase partitioning of more volatile and less absorbing chromophores. The optical properties of the aerosolized PO were consistent with previously reported ambient BB BrC measurements. These results suggest the darkening of atmospheric BrC following non-reactive evaporation that transforms the optical properties and composition of aged BrC aerosols.


Asunto(s)
Carbono , Madera , Aerosoles , Biomasa , Agua
10.
Environ Sci Technol ; 54(19): 11827-11837, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32870663

RESUMEN

Transformations of biomass burning brown carbon aerosols (BB-BrC) over their diurnal lifecycle are currently not well studied. In this study, the aging of BB tar proxy aerosols processed by NO3• under dark conditions followed by the photochemical OH• reaction and photolysis were investigated in tandem flow reactors. The results show that O3 oxidation in the dark diminishes light absorption of wood tar aerosols, resulting in higher particle single-scattering albedo (SSA). NO3• reactions augment the mass absorption coefficient (MAC) of the aerosols by a factor of 2-3 by forming secondary chromophores, such as nitroaromatic compounds (NACs) and organonitrates. Subsequent OH• oxidation and direct photolysis both decompose the organic nitrates (ONs, representing bulk functionalities of NACs and organonitrates) in the NO3•-aged wood tar aerosols, thus decreasing particle absorption. Moreover, NACs degrade faster than organonitrates by photochemical aging. The NO3•-aged wood tar aerosols are more susceptible to photolysis than to OH• reactions. The photolysis lifetimes for the ONs and for the absorbance of the NO3•-aged aerosols are on the order of hours under typical solar irradiation, while the absorption and ON lifetimes toward OH• oxidation are substantially longer. Overall, nighttime aging via NO3• reactions increases the light absorption of wood tar aerosols and shortens their absorption lifetime under daytime conditions.


Asunto(s)
Contaminantes Atmosféricos , Carbono , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , Carbono/análisis , Laboratorios , Fotólisis
11.
Part Fibre Toxicol ; 17(1): 4, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959190

RESUMEN

BACKGROUND: Carbonaceous aerosols emitted from indoor and outdoor biomass burning are major risk factors contributing to the global burden of disease. Wood tar aerosols, namely, tar ball particles, compose a substantial fraction of carbonaceous emissions, especially from biomass smoldering. However, their health-related impacts and toxicity are still not well known. This study investigated the toxicity of the water-soluble fraction of pyrolyzed wood tar aerosols in exposed mice and lung epithelial cells. RESULTS: Mice exposed to water-soluble wood tar aerosols showed increased inflammatory and oxidative stress responses. Bronchial epithelial cells exposed to the same water-soluble wood tar aerosols showed increased cell death with apoptotic characteristics. Alterations in oxidative status, including changes in reactive oxygen species (ROS) levels and reductions in the expression of antioxidant genes related to the transcription factor Nrf2, were observed and were confirmed by increased levels of MDA, a lipid peroxidation adduct. Damage to mitochondria was observed as an early event responsible for the aforementioned changes. CONCLUSIONS: The toxicity and health effect-related mechanisms of water-soluble wood tar were investigated for the first time in the context of biomass burning. Wood tar particles may account for major responses such as cell death, oxidative stress, supression of protection mechnaisms and mitochondrial damaged cause by expsoure to biomass burning aerosols.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Carbono/toxicidad , Pulmón/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Material Particulado/toxicidad , Madera/química , Aerosoles , Animales , Apoptosis/efectos de los fármacos , Biomasa , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Humanos , Exposición por Inhalación/efectos adversos , Pulmón/inmunología , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo
12.
Environ Sci Technol ; 54(3): 1395-1405, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31730747

RESUMEN

Atmospheric brown carbon (BrC) is an important contributor to the radiative forcing of climate by organic aerosols. Because of the molecular diversity of BrC compounds and their dynamic transformations, it is challenging to predictively understand BrC optical properties. OH radical and O3 reactions, together with photolysis, lead to diminished light absorption and lower warming effects of biomass burning BrC. The effects of night-time aging on the optical properties of BrC aerosols are less known. To address this knowledge gap, night-time NO3 radical chemistry with tar aerosols from wood pyrolysis was investigated in a flow reactor. This study shows that the optical properties of BrC change because of transformations driven by reactions with the NO3 radical that form new absorbing species and lead to significant absorption enhancement over the ultraviolet-visible (UV-vis) range. The overnight aging increases the mass absorption coefficients of the BrC by a factor of 1.3-3.2 between 380 nm and 650 nm. Nitrated organic compounds, particularly nitroaromatics, were identified as the main products that contribute to the enhanced light absorption in the secondary BrC. Night-time aging of BrC aerosols represents an important source of secondary BrC and can have a pronounced effect on atmospheric chemistry and air pollution.


Asunto(s)
Carbono , Compuestos Orgánicos , Aerosoles , Biomasa , Madera
13.
Environ Sci Technol ; 53(23): 13949-13958, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31652049

RESUMEN

It has been hypothesized that the cytotoxicity of secondary organic aerosols (SOA) is mediated through the formation of reactive oxygen species (ROS) in the exposed cells. Here, lung epithelial cells (A549) residing at the air-liquid interface were exposed to proxies of anthropogenic and biogenic SOA that were photochemically aged under varying nitrogen oxide (NOx) concentrations in an oxidation flow reactor. The total organic peroxides and ROS radical content in the SOA were quantified by the iodometric spectrophotometric method and by continuous-wave electron paramagnetic resonance. The effect of the exposure was evaluated by measuring cell viability and cellular ROS production following the exposure. The results demonstrate that SOA that aged in the absence of NOx contained more ROS than fresh SOA and were more toxic toward the cells, while varying NOx conditions had no significant influence on levels of the ROS content in fresh SOA and their toxicity. Analysis of ROS in the exposed cells using flow cytometry showed a similar trend with the total ROS content in the SOA. This study provides a first and direct observation of such association.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno
14.
Environ Sci Technol ; 52(6): 3456-3465, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29461820

RESUMEN

The wavelength-dependence of the complex refractive indices (RI) in the visible spectral range of secondary organic aerosols (SOA) are rarely studied, and the evolution of the RI with atmospheric aging is largely unknown. In this study, we applied a novel white light-broadband cavity enhanced spectroscopy to measure the changes in the RI (400-650 nm) of ß-pinene and p-xylene SOA produced and aged in an oxidation flow reactor, simulating daytime aging under NO x-free conditions. It was found that these SOA are not absorbing in the visible range, and that the real part of the RI, n, shows a slight spectral dependence in the visible range. With increased OH exposure, n first increased and then decreased, possibly due to an increase in aerosol density and chemical mean polarizability for SOA produced at low OH exposures, and a decrease in chemical mean polarizability for SOA produced at high OH exposures, respectively. A simple radiative forcing calculation suggests that atmospheric aging can introduce more than 40% uncertainty due to the changes in the RI for aged SOA.


Asunto(s)
Refractometría , Aerosoles , Compuestos Orgánicos , Oxidación-Reducción
15.
Environ Sci Technol ; 51(13): 7432-7441, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28590125

RESUMEN

Human activities release large amounts of anthropogenic pollutants into the air, and thereby produce substantial secondary organic aerosol (SOA). Aromatic hydrocarbons (AHs) that mainly emitted from coal combustion, transportation, solvent use and biofuel/biomass burning, are a major class of anthropogenic SOA precursors. At present, there are few field studies focusing on AH-derived SOA (SOAA) on a continental scale, especially in polluted regions of the world. In this study, a one-year concurrent observation of the SOAA tracer, 2,3-dihydroxy-4-oxopentanoic acid (C5H8O5, DHOPA) was carried out at 12 sites across six regions of China for the first time. The annual averages of DHOPA among the 12 sites ranged from 1.23 to 8.83 ng m-3 with a mean of 3.48 ± 1.96 ng m-3. At all observation sites, the concentrations of DHOPA from fall to spring were significantly higher than those in summertime, and positive correlations were observed between DHOPA and the biomass burning tracer (levoglucosan). This indicated that such a nationwide increase of SOAA during the cold period was highly associated with the enhancement of biomass burning emission. In the northern China, the highest levels of DHOPA were observed in the coldest months during winter, probably due to the enhancement of biofuel and coal consumption for household heating. In the southern China, the highest levels of DHOPA were mostly observed in fall and spring, which were associated with the enhancement of open biomass burning. The apparent increases of DHOPA and levoglucosan levels during the cold period and the negative correlations of visibility with DHOPA and levoglucosan imply that the reduction of SOAA amount and biomass burning emission is an efficient way to reduce haze pollution during fall to winter in China.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Monitoreo del Ambiente , China , Material Particulado , Estaciones del Año
16.
Sci Total Environ ; 593-594: 462-469, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28355592

RESUMEN

In China diesel vehicles dominate the primary emission of particulate matters from on-road vehicles, and they might also contribute substantially to the formation of secondary organic aerosols (SOA). In this study tailpipe exhaust of three typical in-use diesel vehicles under warm idling conditions was introduced directly into an indoor smog chamber with a 30m3 Teflon reactor to characterize primary emissions and SOA formation during photo-oxidation. The emission factors of primary organic aerosol (POA) and black carbon (BC) for the three types of Chinese diesel vehicles ranged 0.18-0.91 and 0.15-0.51gkg-fuel-1, respectively; and the SOA production factors ranged 0.50-1.8gkg-fuel-1 and SOA/POA ratios ranged 0.7-3.7 with an average of 2.2. The fuel-based POA emission factors and SOA production factors from this study for idling diesel vehicle exhaust were 1-3 orders of magnitude higher than those reported in previous studies for idling gasoline vehicle exhaust. The emission factors for total particle numbers were 0.65-4.0×1015particleskg-fuel-1, and particles with diameters less than 50nm dominated in total particle numbers. Traditional C2-C12 precursor non-methane hydrocarbons (NMHCs) could only explain less than 3% of the SOA formed during aging and contribution from other precursors including intermediate volatile organic compounds (IVOC) needs further investigation.

17.
J Environ Sci (China) ; 40: 10-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26969540

RESUMEN

In fall-winter, 2007-2013, visibility and light scattering coefficients (bsp) were measured along with PM2.5 mass concentrations and chemical compositions at a background site in the Pearl River Delta (PRD) region. The daily average visibility increased significantly (p<0.01) at a rate of 1.1 km/year, yet its median stabilized at ~13 km. No haze days occurred when the 24-hr mean PM2.5 mass concentration was below 75 µg/m(3). By multiple linear regression on the chemical budget of particle scattering coefficient (bsp), we obtained site-specific mass scattering efficiency (MSE) values of 6.5 ± 0.2, 2.6 ± 0.3, 2.4 ± 0.7 and 7.3 ± 1.2m(2)/g, respectively, for organic matter (OM), ammonium sulfate (AS), ammonium nitrate (AN) and sea salt (SS). The reconstructed light extinction coefficient (bext) based on the Interagency Monitoring of Protected Visual Environments (IMPROVE) algorithm with our site-specific MSE revealed that OM, AS, AN, SS and light-absorbing carbon (LAC) on average contributed 45.9% ± 1.6%, 25.6% ± 1.2%, 12.0% ± 0.7%, 11.2% ± 0.9% and 5.4% ± 0.3% to light extinction, respectively. Averaged bext displayed a significant reduction rate of 14.1/Mm·year (p<0.05); this rate would be 82% higher if it were not counteracted by increasing relative humidity (RH) and hygroscopic growth factor (f(RH)) at rates of 2.5% and 0.16/year(-1) (p<0.01), respectively, during the fall-winter, 2007-2013. This growth of RH and f(RH) partly offsets the positive effects of lowered AS in improving visibility, and aggravated the negative effects of increasing AN to impair visibility.


Asunto(s)
Contaminación del Aire , Algoritmos , Sulfato de Amonio/análisis , China , Monitoreo del Ambiente , Humedad , Luz , Modelos Lineales , Nitratos/análisis , Material Particulado/análisis , Material Particulado/química , Estaciones del Año
18.
Sci Rep ; 6: 20411, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26842612

RESUMEN

Isoprene is a substantial contributor to global secondary organic aerosol (SOA). The formation of isoprene SOA (SOAI) is highly influenced by anthropogenic emissions. Currently, there is rare information regarding SOAI in polluted regions. In this study, one-year concurrent observation of SOAI tracers was undertaken at 12 sites across China for the first time. The tracers formed from the HO2-channel exhibited higher concentrations at rural sites, while the tracer formed from the NO/NO2-channel showed higher levels at urban sites. 3-Methyltetrahydrofuran-3,4-diols exhibited linear correlations with their ring-opening products, C5-alkenetriols. And the slopes were steeper in the southern China than the northern China, indicating stronger ring-opening reactions there. The correlation analysis of SOAI tracers with the factor determining biogenic emission and the tracer of biomass burning (levoglucosan) implied that the high level of SOAI during summer was controlled by biogenic emission, while the unexpected increase of SOAI during winter was largely due to the elevated biomass burning emission. The estimated secondary organic carbon from isoprene (SOCI) exhibited the highest levels in Southwest China. The significant correlations of SOCI between paired sites implied the regional impact of SOAI in China. Our findings implicate that isoprene origins and SOAI formation are distinctive in polluted regions.


Asunto(s)
Contaminantes Atmosféricos/análisis , Butadienos/análisis , Hemiterpenos/análisis , Pentanos/análisis , Aerosoles/análisis , Biomasa , China , Monitoreo del Ambiente , Estaciones del Año
19.
J Hazard Mater ; 286: 484-92, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25603297

RESUMEN

Based on field observations and thermodynamic model simulation, the annual trend of PM2.5 acidity and its characteristics on non-hazy and hazy days in fall-winter of 2007-2012 in the Pearl River Delta region were investigated. Total acidity ([H(+)](total)) and in-situ acidity ([H(+)](in-situ)) of PM2.5 significantly decreased (F-test, p < 0.05) at a rate of -32 ± 1.5 nmol m(-3)year(-1) and -9 ± 1.7 nmol m(-3) year(-1), respectively. The variation of acidity was mainly caused by the change of the PM2.5 component, i.e., the decreasing rates of [H(+)](total) and [H(+)](in-situ) due to the decrease of sulfate (SO4(2-)) exceeded the increasing rate caused by the growth of nitrate (NO3(-)). [H(+)](total), [H(+)](in-situ) and liquid water content on hazy days were 0.9-2.2, 1.2-3.5 and 2.0-3.0 times those on non-hazy days, respectively. On hazy days, the concentration of organic matter (OM) showed significant enhancement when [H(+)](in-situ) increased (t-test, p < 0.05), while this was not observed on non-hazy days. Moreover, when the acidity was low (i.e., R = [NH4(+)]/(2 × [SO4(2-)]+[NO3(-)])>0.6), NH4NO3 was most likely formed via homogenous reaction. When the acidity was high (R ≤ 0.6), the gas-phase formation of NH4NO3 was inhibited, and the proportion of NO3(-) produced via heterogeneous reaction of N2O5 became significant.


Asunto(s)
Contaminantes Atmosféricos/análisis , Material Particulado/análisis , China , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Nitratos/análisis , Ríos , Estaciones del Año
20.
Environ Sci Technol ; 48(20): 12002-11, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25264588

RESUMEN

We conducted a source apportionment and investigated the atmospheric behavior of carbonaceous aerosols during hazy and normal days using radiocarbon ((14)C) and biomass burning/secondary organic aerosol (SOA) tracers during winter in Guangzhou, China. Haze episodes were formed either abruptly by local emissions or through the accumulation of particles transported from other areas. The average contributions of fossil carbon to elemental carbon (EC), water-insoluble organic carbon, and water-soluble organic carbon were 71 ± 10%, 40 ± 6% and 33 ± 3%, respectively. High contributions of fossil carbon to EC (80-90%) were observed for haze samples that were substantially impacted by local emissions, as were the highest (lowest) ratios for NO3(-)/SO4(2-) (OC/EC), which indicates that these particles mainly came from local vehicle exhaust. Low contributions of fossil carbon to EC (60-70%) were found for haze particles impacted by regional transport. Secondary organic carbon (SOC) calculated using SOA tracers accounts for only ∼ 20% of the SOC estimated by (14)C, which is probably because some important volatile organic carbons are not taken into account in the SOA tracer calculation method and because of the large discrepancy in ambient conditions between the atmosphere and smog chambers. A total of 33 ± 11% of the SOC was of fossil origin, a portion of which could be influenced by humidity.


Asunto(s)
Aerosoles/análisis , Monitoreo del Ambiente/métodos , Aerosoles/química , Contaminantes Atmosféricos/análisis , Biomasa , Carbono/análisis , Carbono/química , Radioisótopos de Carbono , China , Humedad , Nitratos/análisis , Material Particulado/análisis , Estaciones del Año , Solubilidad , Sulfatos/análisis , Emisiones de Vehículos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA