Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Total Environ ; : 174547, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992355

RESUMEN

The application of various submerged macrophytes for ecological restoration has gained increasing attention in urban lake ecosystems. The multitrophic microbial communities that colonize various submerged macrophytes constitute microbial food webs through trophic cascade effects, which affect the biogeochemical cycles of the lake ecosystem and directly determine the effects of ecological restoration. Therefore, it is essential to reveal the diversity, composition, assembly processes, and stability of the microbial communities within epiphytic food webs of diverse submerged macrophytes under eutrophication and ecological restoration scenarios. In this study, we explored the epiphytic microbial food webs of Vallisneria natans and Hydrilla verticillata in both eutrophic and ecological restoration regions. The obtained results indicated that the two regions with different nutrient levels remarkably affected the diversity and composition of epiphytic multitrophic microbial communities of submerged macrophytes, among which, epiphytic predators were more prone to changes in community composition. Secondly, environmental filtering effects were more dominant in the community assembly of epiphytic predators than of prey. Furthermore, the generality and intraguild predation of epiphytic predators were significantly improved within ecological restoration regions, which increased the stability of the epiphytic microbial food webs. Additionally, compared with Hydrilla verticillata, the epiphytic microbial food webs of Vallisneria natans exhibited higher multitrophic diversity and higher network stability regardless of the regions. Overall, this study focuses on the role of the epiphytic microbial food webs of submerged macrophytes in ecological restoration and uncovered the potential of epiphytic predators to enhance the stability of microbial food webs, which may provide new insights into the development of ecological restoration strategies.

2.
Sci Total Environ ; 932: 172565, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642750

RESUMEN

Emergent macrophytes are of great importance for the structure and functioning of wetland ecosystems and play a significant role in environmental improvement, element cycling, and greenhouse gas (GHG) emissions. However, our understanding of how GHG fluxes differ among macrophyte species and its links with the microbial communities remain limited. In this study, we investigated the rhizosphere microbial communities (including total bacteria, methanotrophs, and methanogens) and the GHG fluxes associated with four emergent macrophytes-Phragmites australis, Thalia dealbata, Pontederia cordata, and Zizania latifolia-collected from Xuanwu Lake wetland, China. We observed the highest CH4 flux (FCH4) (9.35 ± 2.52 mg·m-2·h-1) from Z. latifolia zone, followed by P. australis, P. cordata, and T. dealbata zones (5.38 ± 1.63, 2.38 ± 2.91, and 2.02 ± 0.69 mg·m-2·h-1, respectively). Methanogenesis was methylotrophic at all sites, as the 13C-CH4 values were higher than -64 ‰ and the fractionation coefficients were lower than 1.055. We found a positive linear relationship between FCH4 and the methanogen community, in particular the relative abundances of Methanobacterium and Methanosarcina, indicating that the variations in FCH4 among the studied macrophyte-dominated zones might be attributed to the differences in rhizosphere microbial communities. The methane emissions in various macrophyte zones might be due to the higher capacity of methanogenesis compared to methane oxidation which was inhibited by nutrient-rich sediments. Our findings provide insights for selecting specific emergent macrophytes characterized by low FCH4 in wetland ecological restoration.


Asunto(s)
Metano , Microbiota , Rizosfera , Humedales , Metano/metabolismo , China , Microbiología del Suelo , Poaceae , Gases de Efecto Invernadero/análisis , Gases de Efecto Invernadero/metabolismo , Monitoreo del Ambiente , Bacterias/metabolismo
3.
Sci Total Environ ; 903: 166229, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37586539

RESUMEN

Leaves and roots of submerged macrophytes provide extended surfaces and stable internal tissues for distinct microorganisms to rest, but how these microorganisms interact with each other across different niches and ultimately drive the distribution through horizontal and vertical transmissions remains largely undetermined. Knowledge of the mechanisms of assemblage and transmission in aquatic macrophytes-associated microbial communities will help to better understanding their important roles in plant fitness and benefit ecological functions. Here, we conducted a microcosmic experiment based on in situ lake samples to investigate the bacterial community assemblage, transmission, and co-occurrence patterns in different niches of a typical submerged macrophyte, Vallisneria natans (V. natans), including seed endosphere, as well as environmental (water and bulk sediment), epiphytic (phyllosphere and rhizosphere), and endophytic (leaf and root endosphere) microhabitats of both leaves and roots representatives of the above- and below- ground niches (AGNs and BGNs), respectively. We found the bacterial communities colonized in epiphytic niches not only exhibited the highest diversity compared to adjacent environmental and endophytic niches, but also dominated the interactions between those bacterial members of neighboring niches in both AGNs and BGNs. The host plants promoted niche specificity at bacterial community-level, as confirmed by the proportion of bacterial specialists increased with plant proximity, especially in the BGNs. Furthermore, the bacterial taxa colonized in the AGNs exhibited higher horizontal and vertical transmission capacities than those in the BGNs, especially in the vertical transmission from seeds to leaves (41.38 %) than roots (0.42 %). Meanwhile, the bacterial co-occurrence network in AGNs was shown to have stronger small-world characteristics but weaker stability than those in the BGNs. Overall, this study cast new light on the plant microbiome in the aquatic environment, thus better promoting the potential development of strategies for breeding aquatic macrophyte holobiont with enhanced water purification and pollutant removal capabilities in the future.

4.
Appl Environ Microbiol ; 89(7): e0071723, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37404156

RESUMEN

Submerged macrophytes and their epiphytic microbes form a "holobiont" that plays crucial roles in regulating the biogeochemical cycles of aquatic ecosystems but is sensitive to environmental disturbances such as ammonium loadings. Increasingly more studies suggest that plants may actively seek help from surrounding microbial communities whereby conferring benefits in responding to particular abiotic stresses. However, empirical evidence is scarce regarding how aquatic plants reconstruct their microbiomes as a "cry-for-help" against acute ammonium stress. Here, we investigated the temporal dynamics of the phyllosphere and rhizosphere bacterial communities of Vallisneria natans following ammonium stress and recovery periods. The bacterial community diversity of different plant niches exhibited opposite patterns with ammonium stress, that is, decreasing in the phyllosphere while increasing in the rhizosphere. Furthermore, both phyllosphere and rhizosphere bacterial communities underwent large compositional changes at the end of ammonium stress, significantly enriching of several nitrifiers and denitrifiers. Meanwhile, bacterial legacies wrought by ammonium stress were detected for weeks; some plant growth-promoting and stress-relieving bacteria remained enriched even after stress disappeared. Structural equation model analysis showed that the reshaped bacterial communities in plant niches collectively had a positive effect on maintaining plant biomass. Additionally, we applied an age-prediction model to predict the bacterial community's successional trajectory, and the results revealed a persistent change in bacterial community development under ammonium treatment. Our findings highlight the importance of plant-microbe interactions in mitigating plant stress and fostering a better understanding of the assembly of plant-beneficial microbes under ammonium stress in aquatic ecosystems. IMPORTANCE Increasing anthropogenic input of ammonium is accelerating the decline of submerged macrophytes in aquatic ecosystems. Finding efficient ways to release submerged macrophytes from ammonium stress is crucial to maintain their ecological benefits. Microbial symbioses can alleviate abiotic stress in plants, but harnessing these beneficial interactions requires a detailed understanding of plant microbiome responses to ammonium stress, especially over a continuous time course. Here, we tracked the temporal changes in bacterial communities associated with the phyllosphere and rhizosphere of Vallisneria natans during ammonium stress and recovery periods. Our results showed that severe ammonium stress triggers a plant-driven timely reshaping of the associated bacterial community in a niche-specific strategy. The reassembled bacterial communities could potentially benefit the plant by positively contributing to nitrogen transformation and plant growth promotion. These findings provide empirical evidence regarding the adaptive strategy of aquatic plants whereby they recruit beneficial microbes against ammonium stress.


Asunto(s)
Compuestos de Amonio , Hydrocharitaceae , Microbiota , Bacterias , Biomasa , Rizosfera
5.
Microb Ecol ; 85(3): 965-979, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35641581

RESUMEN

Macrophyte rhizosphere microbes, as crucial components of the wetland ecosystem, play an important role in maintaining the function and stability of natural and constructed wetlands. Distinct environmental conditions and management practices between natural and constructed wetlands would affect macrophytes rhizosphere microbial communities and their associated functions. Nevertheless, the understanding of the diversity, composition, and co-occurrence patterns of the rhizosphere bacterial communities in natural and constructed wetlands remains unclear. Here, we used 16S rRNA gene high-throughput sequencing to characterize the bacterial community of the rhizosphere and bulk sediments of macrophyte Phragmites australis in representative natural and constructed wetlands. We observed higher alpha diversity of the bacterial community in the constructed wetland than that of the natural wetland. Additionally, the similarity of bacterial community composition between rhizosphere and bulk sediments in the constructed wetland was increased compared to that of the natural wetland. We also found that plants recruit specific taxa with adaptive functions in the rhizosphere of different wetland types. Rhizosphere samples of the natural wetland significantly enriched the functional bacterial groups that mainly related to nutrient cycling and plant-growth-promoting, while those of the constructed wetland-enriched bacterial taxa with potentials for biodegradation. Co-occurrence network analysis showed that the interactions among rhizosphere bacterial taxa in the constructed wetland were more complex than those of the natural wetland. This study broadens our understanding of the distinct selection processes of the macrophytes rhizosphere-associated microbes and the co-occurrence network patterns in different wetland types. Furthermore, our findings emphasize the importance of plant-microbe interactions in wetlands and further suggest P. australis rhizosphere enriched diverse functional bacteria that might enhance the wetland performance through biodegradation, nutrient cycling, and supporting plant growth.


Asunto(s)
Microbiota , Humedales , Rizosfera , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Bacterias , Microbiología del Suelo
6.
Mol Ecol ; 31(4): 1180-1195, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34846091

RESUMEN

Comparison of the spatial distribution and assembly processes between bulk and rhizosphere bacterial communities at multiple spatial scales is vital for understanding the generation and maintenance of microbial diversity under the influence of plants. However, biogeographical patterns and the underlying mechanisms of microbial communities in bulk and rhizosphere sediments of aquatic ecosystems remain unclear. Here, we collected 140 bulk and rhizosphere sediment samples of Phragmites australis from 14 lakeshore zones across a 510-km transect in the Middle-Lower Yangtze plain. We performed high-throughput sequencing to investigate the bacterial diversity, composition, spatial distribution and assembly processes of these samples. Bacterial communities in the rhizosphere sediment exhibited higher alpha diversity but lower beta diversity than those in the bulk sediment. Both bulk and rhizosphere sediment bacterial communities had significant distance-decay relationships, but spatial turnover of the rhizosphere sediment bacterial community was strikingly lower than that of bulk sediment. Despite variable selection dominating the assembly processes of bacterial communities in bulk sediment, the rhizosphere of P. australis enhanced the role of dispersal limitation in governing bacterial communities. The relative importance of different ecological processes in determining bacterial assembly presented distinct patterns of increasing or decreasing linearly with an increase of scale. This investigation highlights the convergent selection of the aquatic plant rhizosphere for surrounding bacterial communities and emphasizes the importance of different ecological processes on bacterial community assembly in sediment environments over different scales. Furthermore, we provide a preliminary framework for exploring the scale dependence of microbial community assembly in aquatic ecosystems.


Asunto(s)
Microbiota , Rizosfera , Bacterias/genética , Microbiota/genética , Poaceae/microbiología
7.
Microb Ecol ; 83(2): 314-327, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33956174

RESUMEN

Rhizosphere microbes play a key role in maintaining plant health and regulating biogeochemical cycles. The active bacterial community (ABC) in rhizosphere, as a small fraction of the rhizosphere resident bacterial community (RBC), has the potential to actively participate in nutrient cycling processes at the root-sediment interface. Here, we investigated the ABC and RBC within the rhizosphere of Phragmites australis (P. australis) subjected to different environmental conditions (i.e., seasons and flooding conditions) in Lake Taihu, China. Our results indicated that RBC exhibited significantly higher alpha diversity as well as lower beta diversity than ABC. The active ratios of 16S rRNA to 16S rDNA (also RNA/DNA) of the bacterial communities in summer and winter suggested a lower proportion of potential active taxa in the rhizosphere bacterial community during summer. Network analysis showed that negative correlations in each network were observed to dominate the species correlations between the rhizosphere and bulk sediment bacterial communities. Our results revealed that niche differentiation and seasonal variation played crucial roles in driving the assembly of ABC and RBC associated with the rhizospheres of P. australis. These findings broaden our knowledge about how rhizosphere bacterial communities respond to environmental variations through changing their diversity and composition.


Asunto(s)
Rizosfera , Microbiología del Suelo , Bacterias/genética , Poaceae/microbiología , ARN Ribosómico 16S/genética
8.
Sci Total Environ ; 785: 147286, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33932676

RESUMEN

Epibiotic bacterial community colonized on the plant leaf plays important roles in promoting plant growth and nutrient absorption, but is sensitive to environmental changes. As one of the most important environmental factors affecting the growth of plants and photosynthetic microorganisms, light may affect the diversity, composition, and interactions of the epibiotic bacterial community. Submerged plants in the aquatic ecosystem may be more sensitive to light intensity variations compared to the terrestrial plants since they usually receive less light. However, the effects of light on the interactions between the submerged plants and their epibiotic microbial communities remain uncertain. Here we used the 16S rRNA gene high-throughput sequencing to investigate the diversity and composition of the bacterioplankton and epibiotic bacterial communities of the Cabomba caroliniana under four different shading levels. A total of 24 water and leaf samples were collected from the experimental microcosms near Lake Taihu. We found the epibiotic bacterial community possessed a higher diversity than that of the bacterioplankton community, although the alpha diversity of the bacterioplankton community was more susceptible to different levels of shading. SourceTracker analysis revealed that with the increase of shading, the colonization of bacterioplankton to epibiotic bacteria decreased. Network analysis showed that the bacterial community network at 50% shading level had the lowest modularity and highest clustering coefficient compared to the bacterial community networks of other shading levels. Our findings provided new understandings of the effects of different light intensities on the epibiotic bacterial communities of submerged macrophytes.


Asunto(s)
Ecosistema , Microbiota , Organismos Acuáticos , Bacterias/genética , Lagos , Plancton , ARN Ribosómico 16S/genética
9.
Appl Environ Microbiol ; 86(14)2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32385080

RESUMEN

The common reed (Phragmites australis), a cosmopolitan aquatic macrophyte, plays an important role in the structure and function of aquatic ecosystems. We compared bacterial community compositions (BCCs) and their assembly processes in the root-associated compartments (i.e., rhizosphere and endosphere) of reed and bulk sediment between summer and winter. The BCCs were analyzed using high-throughput sequencing of the bacterial 16S rRNA gene; meanwhile, null-model analysis was employed to characterize their assembly mechanisms. The sources of the endosphere BCCs were quantitatively examined using SourceTracker from bulk sediment, rhizosphere, and seed. We observed the highest α-diversity and the lowest ß-diversity of BCCs in the rhizosphere in both seasons. We also found a significant increase in α- and ß-diversity in summer compared to that in winter among the three compartments. It was demonstrated that rhizosphere sediments were the main source (∼70%) of root endosphere bacteria during both seasons. Null-model tests indicated that stochastic processes primarily affected endosphere BCCs, whereas both deterministic and stochastic processes dictated bacterial assemblages of the rhizosphere, with the relative importance of stochastic versus deterministic processes depending on the season. This study suggests that multiple mechanisms of bacterial selection and community assembly exist both inside and outside P. australis roots in different seasons.IMPORTANCE Understanding the composition and assembly mechanisms of root-associated microbial communities of plants is crucial for understanding the interactions between plants and soil. Most previous studies of the plant root-associated microbiome focused on model and economic plants, with fewer temporal or seasonal investigations. The assembly mechanisms of root-associated bacterial communities in different seasons remain poorly known, especially for the aquatic macrophytes. In this study, we compared the diversity, composition, and relative importance of two different assembly processes (stochastic and deterministic processes) of bacterial communities associated with bulk sediment and the rhizosphere and endosphere of Phragmites australis in summer and winter. While we found apparent differences in composition, diversity, and assembly processes of bacterial communities among different compartments, season played important roles in determining BCCs and their diversity patterns and assemblages. We also found that endosphere bacteria mainly originated from the rhizosphere. The results add new knowledge regarding the plant-microbe interactions in aquatic ecosystems.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiota , Poaceae/microbiología , Rizosfera , Microbiología del Suelo , China , Raíces de Plantas/microbiología , Estaciones del Año
10.
Water Sci Technol ; 77(5-6): 1698-1705, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29595172

RESUMEN

Detailed ecological information on ammonia-oxidizing bacteria (AOB) in activated sludge of wastewater treatment plants (WWTPs) is very important to improve the efficiency of wastewater treatment. In this study, activated sludge samples were collected from seven municipal WWTPs located in seven cities in China, and real-time quantitative polymerase chain reaction (qPCR), as well as construction of clone libraries combined with correlation-based data analysis was performed. Further, the effect of geographic distribution and some water quality parameters on the ecological distribution of AOB in activated sludge from WWTPs were investigated. The geographic distribution, the influent concentration of total nitrogen (TN) and ammonia nitrogen (NH4+-N) had significant effects on the abundance of AOB (P < 0.05). However, the community structure of AOB were not significantly affected by geographic distribution, but by water quality parameters including the concentrations of TN and NH4+-N. N. oligotropha lineage was the dominant AOB group in the wastewater treatment systems. The results obtained in this study provide useful information to understand some aspects of the ecological information and influencing factors of AOB in geographically distributed WWTPs.


Asunto(s)
Amoníaco/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Aguas del Alcantarillado/microbiología , Amoníaco/química , Archaea , China , Nitrógeno , Oxidación-Reducción , Filogenia , Eliminación de Residuos Líquidos , Aguas Residuales/microbiología , Contaminantes Químicos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA