Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Pathog ; 19(5): e1011123, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37196033

RESUMEN

SARS-CoV Spike (S) protein shares considerable homology with SARS-CoV-2 S, especially in the conserved S2 subunit (S2). S protein mediates coronavirus receptor binding and membrane fusion, and the latter activity can greatly influence coronavirus infection. We observed that SARS-CoV S is less effective in inducing membrane fusion compared with SARS-CoV-2 S. We identify that S813T mutation is sufficient in S2 interfering with the cleavage of SARS-CoV-2 S by TMPRSS2, reducing spike fusogenicity and pseudoparticle entry. Conversely, the mutation of T813S in SARS-CoV S increased fusion ability and viral replication. Our data suggested that residue 813 in the S was critical for the proteolytic activation, and the change from threonine to serine at 813 position might be an evolutionary feature adopted by SARS-2-related viruses. This finding deepened the understanding of Spike fusogenicity and could provide a new perspective for exploring Sarbecovirus' evolution.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteolisis , Replicación Viral , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
2.
Microbiol Spectr ; 9(2): e0135221, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34643438

RESUMEN

The emerging new lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have marked a new phase of coronavirus disease 2019 (COVID-19). Understanding the recognition mechanisms of potent neutralizing monoclonal antibodies (NAbs) against the spike protein is pivotal for developing new vaccines and antibody drugs. Here, we isolated several monoclonal antibodies (MAbs) against the SARS-CoV-2 spike protein receptor-binding domain (S-RBD) from the B cell receptor repertoires of a SARS-CoV-2 convalescent. Among these MAbs, the antibody nCoV617 demonstrates the most potent neutralizing activity against authentic SARS-CoV-2 infection, as well as prophylactic and therapeutic efficacies against the human angiotensin-converting enzyme 2 (ACE2) transgenic mouse model in vivo. The crystal structure of S-RBD in complex with nCoV617 reveals that nCoV617 mainly binds to the back of the "ridge" of RBD and shares limited binding residues with ACE2. Under the background of the S-trimer model, it potentially binds to both "up" and "down" conformations of S-RBD. In vitro mutagenesis assays show that mutant residues found in the emerging new lineage B.1.1.7 of SARS-CoV-2 do not affect nCoV617 binding to the S-RBD. These results provide a new human-sourced neutralizing antibody against the S-RBD and assist vaccine development. IMPORTANCE COVID-19 is a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 pandemic has posed a serious threat to global health and the economy, so it is necessary to find safe and effective antibody drugs and treatments. The receptor-binding domain (RBD) in the SARS-CoV-2 spike protein is responsible for binding to the angiotensin-converting enzyme 2 (ACE2) receptor. It contains a variety of dominant neutralizing epitopes and is an important antigen for the development of new coronavirus antibodies. The significance of our research lies in the determination of new epitopes, the discovery of antibodies against RBD, and the evaluation of the antibodies' neutralizing effect. The identified antibodies here may be drug candidates for the development of clinical interventions for SARS-CoV-2.


Asunto(s)
Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , COVID-19/terapia , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Sitios de Unión/inmunología , Vacunas contra la COVID-19/inmunología , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunización Pasiva/métodos , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Dominios y Motivos de Interacción de Proteínas/inmunología , Carga Viral/efectos de los fármacos , Sueroterapia para COVID-19
3.
Nat Commun ; 12(1): 2697, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976229

RESUMEN

Although human antibodies elicited by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein are profoundly boosted upon infection, little is known about the function of N-reactive antibodies. Herein, we isolate and profile a panel of 32 N protein-specific monoclonal antibodies (mAbs) from a quick recovery coronavirus disease-19 (COVID-19) convalescent patient who has dominant antibody responses to the SARS-CoV-2 N protein rather than to the SARS-CoV-2 spike (S) protein. The complex structure of the N protein RNA binding domain with the highest binding affinity mAb (nCoV396) reveals changes in the epitopes and antigen's allosteric regulation. Functionally, a virus-free complement hyperactivation analysis demonstrates that nCoV396 specifically compromises the N protein-induced complement hyperactivation, which is a risk factor for the morbidity and mortality of COVID-19 patients, thus laying the foundation for the identification of functional anti-N protein mAbs.


Asunto(s)
Anticuerpos Antivirales/farmacología , COVID-19/inmunología , Activación de Complemento/efectos de los fármacos , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , Regulación Alostérica , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos , Complejo Antígeno-Anticuerpo/química , Convalecencia , Proteínas de la Nucleocápside de Coronavirus/química , Cristalografía por Rayos X , Epítopos , Humanos , Fosfoproteínas/química , Fosfoproteínas/inmunología , Conformación Proteica
4.
iScience ; 24(3): 102187, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33615195

RESUMEN

Dysregulated immune cell responses have been linked to the severity of coronavirus disease 2019 (COVID-19), but the specific viral factors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were currently unknown. Herein, we reveal that the Immunoglobulin-like fold ectodomain of the viral protein SARS-CoV-2 ORF7a interacts with high efficiency to CD14+ monocytes in human peripheral blood, compared to pathogenic protein SARS-CoV ORF7a. The crystal structure of SARS-CoV-2 ORF7a at 2.2 Å resolution reveals three remarkable changes on the amphipathic side of the four-stranded ß-sheet, implying a potential functional interface of the viral protein. Importantly, SARS-CoV-2 ORF7a coincubation with CD14+ monocytes ex vivo triggered a decrease in HLA-DR/DP/DQ expression levels and upregulated significant production of proinflammatory cytokines, including IL-6, IL-1ß, IL-8, and TNF-α. Our work demonstrates that SARS-CoV-2 ORF7a is an immunomodulating factor for immune cell binding and triggers dramatic inflammatory responses, providing promising therapeutic drug targets for pandemic COVID-19.

5.
Biosens Bioelectron ; 176: 112920, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33418184

RESUMEN

The worldwide epidemic of novel coronavirus disease (COVID-19) has led to a strong demand for highly efficient immunobinding to achieve rapid and accurate on-site detection of SARS-CoV-2 antibodies. However, hour-scale time-consumption is usually required to ensure the adequacy of immunobinding on expensive large instruments in hospitals, and the common false negative or positive results often occur in rapid on-site immunoassay (e.g. immunochromatography). We solved this dilemma by presenting a reciprocating-flowing immunobinding (RF-immunobinding) strategy. RF-immunobinding enabled the antibodies in fluid contacting with the corresponding immobilized antigens on substrate repeatedly during continuous reciprocating-flowing, to achieve adequate immunobinding within 60 s. This strategy was further developed into an immunoassay method for the serological detection of 13 suspected COVID-19 patients. We obtained a 100% true negative and true positive rate and a limit of quantification (LOQ) of 4.14 pg/mL. Our strategy also can be a potential support for other areas related to immunorecognition, such as proteomics, immunopharmacology and immunohistochemistry.


Asunto(s)
Prueba Serológica para COVID-19/instrumentación , COVID-19/diagnóstico , Dispositivos Laboratorio en un Chip , SARS-CoV-2/inmunología , Anticuerpos Antivirales/sangre , Reacciones Antígeno-Anticuerpo , Técnicas Biosensibles/instrumentación , COVID-19/inmunología , COVID-19/virología , Prueba Serológica para COVID-19/métodos , Ensayo de Inmunoadsorción Enzimática/instrumentación , Diseño de Equipo , Humanos , Proteínas Inmovilizadas , Pandemias
6.
Front Immunol ; 12: 807134, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975921

RESUMEN

ORF8 is a viral immunoglobulin-like (Ig-like) domain protein encoded by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA genome. It tends to evolve rapidly and interfere with immune responses. However, the structural characteristics of various coronavirus ORF8 proteins and their subsequent effects on biological functions remain unclear. Herein, we determined the crystal structures of SARS-CoV-2 ORF8 (S84) (one of the epidemic isoforms) and the bat coronavirus RaTG13 ORF8 variant at 1.62 Å and 1.76 Å resolution, respectively. Comparison of these ORF8 proteins demonstrates that the 62-77 residues in Ig-like domain of coronavirus ORF8 adopt different conformations. Combined with mutagenesis assays, the residue Cys20 of ORF8 is responsible for forming the covalent disulfide-linked dimer in crystal packing and in vitro biochemical conditions. Furthermore, immune cell-binding assays indicate that various ORF8 (SARS-CoV-2 ORF8 (L84), ORF8 (S84), and RaTG13 ORF8) proteins have different interaction capabilities with human CD14+ monocytes in human peripheral blood. These results provide new insights into the specific characteristics of various coronavirus ORF8 and suggest that ORF8 variants may influence disease-related immune responses.


Asunto(s)
COVID-19/inmunología , Quirópteros/inmunología , Inmunidad/inmunología , Dominios de Inmunoglobulinas/inmunología , Proteínas Virales/inmunología , Animales , Sitios de Unión/genética , COVID-19/virología , Células Cultivadas , Quirópteros/genética , Quirópteros/metabolismo , Cristalografía por Rayos X , Humanos , Inmunidad/genética , Dominios de Inmunoglobulinas/genética , Receptores de Lipopolisacáridos/inmunología , Receptores de Lipopolisacáridos/metabolismo , Modelos Moleculares , Monocitos/inmunología , Monocitos/metabolismo , Mutación , Unión Proteica , Especificidad de la Especie , Proteínas Virales/clasificación , Proteínas Virales/genética
7.
Bioengineered ; 11(1): 729-742, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32635817

RESUMEN

Centromere protein W (CENP-W), identified as a centromeric component, plays an important role in the cell life cycle. However, how CENPW expression affects biological processes in liver cancer cells remains unknown. In this article, we found that CENPW was overexpressed in liver cancer tissues. Low CENPW expression was correlated with a better prognosis in hepatocellular carcinoma (HCC) patients, compared to high CENPW expression. The results of qRT-PCR and western blot assay showed that CENPW was effectively knocked down in HCC cells using siRNA transfection. Cell proliferation, migration, and invasion were inhibited. Cell apoptosis rates were increased. The cells were arrested in the G2/M phase of the cell cycle. Subsequently, 127 differentially expressed genes (DEGs) were identified based on RNA-seq data. GO and KEGG enrichment and PPI network analysis were performed. The novel DEGs were found and mainly enriched in nucleosome assembly and the complement system. In summary, our study indicated that overexpression of CENPW implied unfavorable prognosis and CENPW might be the potential predictive biomarker in liver cancer. Downregulation of CENPW might inhibit the HCC developmentby regulating the expression of the molecules in nucleosomes and the complement system.


Asunto(s)
Carcinoma Hepatocelular/fisiopatología , Neoplasias Hepáticas/fisiopatología , Apoptosis/genética , Apoptosis/fisiología , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular Tumoral , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , RNA-Seq
8.
Acta Pharm Sin B ; 10(7): 1228-1238, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32363136

RESUMEN

The outbreak of coronavirus disease (COVID-19) caused by SARS-CoV-2 virus continually lead to worldwide human infections and deaths. Currently, there is no specific viral protein-targeted therapeutics. Viral nucleocapsid protein is a potential antiviral drug target, serving multiple critical functions during the viral life cycle. However, the structural information of SARS-CoV-2 nucleocapsid protein remains unclear. Herein, we have determined the 2.7 Å crystal structure of the N-terminal RNA binding domain of SARS-CoV-2 nucleocapsid protein. Although the overall structure is similar as other reported coronavirus nucleocapsid protein N-terminal domain, the surface electrostatic potential characteristics between them are distinct. Further comparison with mild virus type HCoV-OC43 equivalent domain demonstrates a unique potential RNA binding pocket alongside the ß-sheet core. Complemented by in vitro binding studies, our data provide several atomic resolution features of SARS-CoV-2 nucleocapsid protein N-terminal domain, guiding the design of novel antiviral agents specific targeting to SARS-CoV-2.

9.
Front Chem ; 8: 624765, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33511102

RESUMEN

Coronavirus disease 2019 (COVID-19) has caused massive disruptions to society and the economy, and the transcriptional regulatory mechanisms behind the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are poorly understood. Herein, we determined the crystal structure of the SARS-CoV-2 nucleocapsid protein C-terminal domain (CTD) at a resolution of 2.0 Å, and demonstrated that the CTD has a comparable distinct electrostatic potential surface to equivalent domains of other reported CoVs, suggesting that the CTD has novel roles in viral RNA binding and transcriptional regulation. Further in vitro biochemical assays demonstrated that the viral genomic intergenic transcriptional regulatory sequences (TRSs) interact with the SARS-CoV-2 nucleocapsid protein CTD with a flanking region. The unpaired adeno dinucleotide in the TRS stem-loop structure is a major determining factor for their interactions. Taken together, these results suggested that the nucleocapsid protein CTD is responsible for the discontinuous viral transcription mechanism by recognizing the different patterns of viral TRS during transcription.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA