Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(5): 2653-2661, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38710540

RESUMEN

Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated electron transportation in the conventional nanocrystalline sensing layers. To address this long-standing issue, in the present work, we report a class of highly reactive and boundary-less ultrathin SnO2 films, which are fabricated by the topochemical transformation of 2D SnO transferred from liquid Sn-Bi droplets. The ultrathin SnO2 films are purposely made to consist of well-crystallized quasi-2D nanograins with in-plane grain sizes going beyond 30 nm, whereby the hydroxyl adsorption and grain boundary side-effects are effectively suppressed, giving rise to an activated (101)-dominating dangling-bond surface and a surface-controlled electrical transportation with an exceptional electron mobility of 209 cm2 V-1 s-1. Our work provides a new cost-effective strategy to disruptively improve the gas reception and transduction of SnO2. The proposed chemiresistive sensors exhibit fast, sensitive, and selective hydrogen sensing performance at a much-reduced working temperature of 60 °C. The remarkable sensing performance as well as the simple and scalable fabrication process of the ultrathin SnO2 films render the thus-developed sensors attractive for long awaited practical applications in hydrogen-related industries.


Asunto(s)
Hidrógeno , Compuestos de Estaño , Compuestos de Estaño/química , Hidrógeno/química , Hidrógeno/análisis , Propiedades de Superficie , Gases/análisis , Gases/química , Nanoestructuras/química , Semiconductores
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35105811

RESUMEN

This paper reports the noncontact manipulation of free-falling cylindrical streams of liquid metals into unique shapes, such as levitated loops and squares. Such cylindrical streams form in aqueous media by electrochemically lowering the interfacial tension. The electrochemical reactions require an electrical current that flows through the streams, making them susceptible to the Lorentz force. Consequently, varying the position and shape of a magnetic field relative to the stream controls these forces. Moreover, the movement of the metal stream relative to the magnetic field induces significant forces arising from Lenz's law that cause the manipulated streams to levitate in unique shapes. The ability to control streams of liquid metals in a noncontact manner will enable strategies for shaping electronically conductive fluids for advanced manufacturing and dynamic electronic structures.

3.
ACS Nano ; 15(5): 8706-8714, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33913695

RESUMEN

With the advantages of superior wear resistance, mechanical durability, and stability, the liquid-solid mode triboelectric nanogenerator (TENG) has been attracting much attention in the field of energy harvesting and self-powered sensors. However, most reports are primarily observational, and there still lacks a universal model of this kind of TENG. Here, an equivalent circuit model and corresponding governing equations of a water-solid mode TENG are developed, which could easily be extended to other types of liquid-solid mode TENGs. Based on the first-order lumped circuit theory, the full equivalent circuit model of water-solid mode TENG is modeled as a series connection of two capacitors and a water resistor. Accordingly, its output characteristics and critical influences are examined, to investigate the relevant physical mechanism behind them. Afterward, a three-dimensional water-solid TENG array constructed from many single-wire TENGs is fabricated, which can not only harvest tiny amounts of energy from any movement of water, but also can verify our theoretical predictions. The fundamentals of the water-solid mode TENG presented in this work could contribute to solving the problem of electrical phenomena on a liquid-solid interface, and may establish a sound basis for a thorough understanding of the liquid-solid mode TENG.

4.
Natl Sci Rev ; 7(2): 366-372, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34692052

RESUMEN

Room-temperature liquid metal is discovered to be capable of penetrating through macro- and microporous materials by applying a voltage. The liquid metal penetration effects are demonstrated in various porous materials such as tissue paper, thick and fine sponges, fabrics, and meshes. The underlying mechanism is that the high surface tension of liquid metal can be significantly reduced to near-zero due to the voltage-induced oxidation of the liquid metal surface in a solution. It is the extremely low surface tension and gravity that cause the liquid metal to superwet the solid surface, leading to the penetration phenomena. These findings offer new opportunities for novel microfluidic applications and could promote further discovery of more exotic fluid states of liquid metals.

5.
RSC Adv ; 8(14): 7422-7427, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35539103

RESUMEN

Recent developments of self-powered devices and systems have attracted much attention. Lead zirconate titanate (PZT) has been regarded as one of the most promising materials for building high-performance nanogenerators. Herein, vertically aligned PZT nanorod arrays were synthesized on a pre-oxidized Ti substrate in the presence of a surfactant by a one-step hydrothermal method. The PZT nanorod arrays consist of an initial layer of a PZT film and well aligned nanorods with (001)-orientated tetragonal single crystalline structures. The PZT nanorods exhibited a high piezoelectric response with a d 33 value of up to 1600 pm V-1. A piezoelectric energy harvester was fabricated based on the PZT nanorod arrays, which exhibited outstanding energy harvesting performance with an open-circuit output voltage of 3.3 V and 8 V when the devices were pressed by a compressive 10 N force and a finger tapping motion, respectively. Moreover, the average power density generated by those two mechanical stimulations were up to 3.16 and 5.92 µW cm-2 with the external load of 1 MΩ.

6.
ACS Appl Mater Interfaces ; 9(34): 28586-28595, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28783301

RESUMEN

The rapid development of microscaled piezoelectric energy harvesters has provided a simple and highly efficient way for building self-powered sensor systems through harvesting the mechanical energy from the ambient environment. In this work, a self-powered microfluidic sensor that can harvest the mechanical energy of the fluid and simultaneously monitor their characteristics was fabricated by integrating the flexible piezoelectric poly(vinylidene fluoride) (PVDF) nanofibers with the well-designed microfluidic chips. Those devices could generate open-circuit high output voltage up to 1.8 V when a droplet of water is flowing past the suspended PVDF nanofibers and result in their periodical deformations. The impulsive output voltage signal allowed them to be utilized for droplets or bubbles counting in the microfluidic systems. Furthermore, the devices also exhibited self-powered sensing behavior due to the decreased voltage amplitude with increasing input pressure and liquid viscosity. The drop of output voltage could be attributed to the variation of flow condition and velocity of the droplets, leading to the reduced deformation of the piezoelectric PVDF layer and the decrease of the generated piezoelectric potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA