Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
J Environ Manage ; 362: 121330, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38833927

RESUMEN

Fluoroquinolone antibiotics and antibiotic resistance genes (ARGs) regarded as emerging contaminants were poorly removed in conventional wastewater treatment plants (WWTPs). Nitrogen-containing heterocyclic organics were found to be biodegraded through denitrification co-metabolism. The feasibility to enhance antibiotics removal efficiency in WWTPs through denitrification co-metabolism needs to be further verified. Meanwhile, due to significant correlation between ARGs profiles and nitrogen removal that was previously observed, the dissemination of ARGs during denitrification was worthy of in-depth understanding. Herein, the antibiotic removal and ARGs dissemination in denitrification co-metabolism condition were investigated with different denitrifying consortiums that acclimated under different conditions in terms of carbon source and the exposure of Ofloxacin (OFL). The results suggest that the removal of OFL can be enhanced by the denitrification co-metabolism. The tolerance to OFL is different among various denitrifying communities. For the denitrifying consortiums acclimated with methanol, long-term exposure to trace OFL (1 µg/L) could reduce the capabilities of removal and tolerance to OFL. On the contrary, those acclimated with sodium acetate (NaAc), the capabilities of removal and tolerance to OFL, were enhanced by long-term exposure to trace OFL. According to the quantitative determination to 384 target genes with high-throughput quantitative PCR, the abundance of ARGs in consortiums greatly increased when exposed to OFL at the concentration of comparable to sewage, which was also much larger than that acclimated with methanol. It can be confirmed and supported by DNA sequencing results that the antibiotic removal and the dissemination of ARGs were determined by microbial community that could be shaped with carbon source. These conclusions suggest that selecting the right external carbon source can be a useful strategy for WWTPs to control antibiotics and ARGs in the effluent. From a new perspective on mitigating ARGs dissemination, NaAc was not an appropriate carbon source.

2.
Bio Protoc ; 14(6): e4955, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38835995

RESUMEN

Estimating the time of most recent common ancestor (tMRCA) is important to trace the origin of pathogenic viruses. This analysis is based on the genetic diversity accumulated in a certain time period. There have been thousands of mutant sites occurring in the genomes of SARS-CoV-2 since the COVID-19 pandemic started; six highly linked mutation sites occurred early before the start of the pandemic and can be used to classify the genomes into three main haplotypes. Tracing the origin of those three haplotypes may help to understand the origin of SARS-CoV-2. In this article, we present a complete protocol for the classification of SARS-CoV-2 genomes and calculating tMRCA using Bayesian phylodynamic method. This protocol may also be used in the analysis of other viral genomes. Key features • Filtering and alignment of a massive number of viral genomes using custom scripts and ViralMSA. • Classification of genomes based on highly linked sites using custom scripts. • Phylodynamic analysis of viral genomes using Bayesian evolutionary analysis sampling trees (BEAST). • Visualization of posterior distribution of tMRCA using Tracer.v1.7.2. • Optimized for the SARS-CoV-2.

3.
J Hazard Mater ; 474: 134658, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38810582

RESUMEN

Microplastics pollution threatens to marine organisms, particularly bivalves that actively ingest and accumulate microplastics of certain sizes, potentially disrupting intestinal homeostasis. This study investigated the microplastic abundance in wild and farmed mussels around Singapore, and examined the size-dependent effects of nano- to micro-scale polystyrene (0.5 µm/5 µm/50 µm) on the mussel intestinal microbiome in the laboratory. The field investigation revealed higher microplastic abundance in farmed mussels compared to wild ones. Experimentally, mussels exposed to 0.6 mg/L of microplastics for 7 days, followed by a 7-day depuration period, showed substantial impacts on Spirochaetes and Proteobacteria, facilitating the proliferation of pathogenic species and differentially affecting their pathogenic contributions. Metagenomics analysis revealed that microplastic exposure reduced Spirochaeta's contribution to virulence and pathogenicity loss, did not affect Vibrio and Oceanispirochaeta's pathogenicity, and increased Treponema and Oceanispirochaeta's contributions to pathogenicity loss. Moreover, microplastics increased transmembrane transporters and impacted oxidative phosphorylation enzymes, impairing energy metabolism. These effects persisted after depuration, indicating lack of resilience in the microbiome. Nano- and micro-scale plastics perturbed the mussel microbiome composition and functions in a size-dependent manner, with nano-plastics being the most disruptive. The increasing use and sale of aquaculture equipment of plastic may exacerbate the intestinal dysbiosis in bivalves, which threatens consumers' health.

4.
Environ Sci Technol ; 58(15): 6781-6792, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38560895

RESUMEN

Predicting the hotspots of antimicrobial resistance (AMR) in aquatics is crucial for managing associated risks. We developed an integrated modeling framework toward predicting the spatiotemporal abundance of antibiotics, indicator bacteria, and their corresponding antibiotic-resistant bacteria (ARB), as well as assessing the potential AMR risks to the aquatic ecosystem in a tropical reservoir. Our focus was on two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP), and on Escherichia coli (E. coli) and its variant resistant to sulfamethoxazole-trimethoprim (EC_SXT). We validated the predictive model using withheld data, with all Nash-Sutcliffe efficiency (NSE) values above 0.79, absolute relative difference (ARD) less than 25%, and coefficient of determination (R2) greater than 0.800 for the modeled targets. Predictions indicated concentrations of 1-15 ng/L for SMX, 0.5-5 ng/L for TMP, and 0 to 5 (log10 MPN/100 mL) for E. coli and -1.1 to 3.5 (log10 CFU/100 mL) for EC_SXT. Risk assessment suggested that the predicted TMP could pose a higher risk of AMR development than SMX, but SMX could possess a higher ecological risk. The study lays down a hybrid modeling framework for integrating a statistic model with a process-based model to predict AMR in a holistic manner, thus facilitating the development of a better risk management framework.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/farmacología , Ecosistema , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Combinación Trimetoprim y Sulfametoxazol , Farmacorresistencia Microbiana , Bacterias
5.
Bioresour Technol ; 401: 130741, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670292

RESUMEN

Acid accumulation and carbon emission are two major challenges in anaerobic digestion. Syntrophic consortia can employ reverse electron transfer (RET) to facilitate thermodynamically unfavorable redox reactions during acetogenesis. However, the potential mechanisms and regulatory methods of RET remain unclear. This study examines the regulatory mechanisms by which exogenous CO2 affects RET and demonstrates that biochar maximizes CO2 solubility at 25.8 mmol/L to enhance effects further. CO2 synergized with biochar significantly increases cumulative methane production and propionate degradation rate. From the bioenergetic perspective, CO2 decreases energy level to a maximum of -87 kJ/mol, strengthening the thermodynamic viability. The underlying mechanism can be attributed to RET promotion, as indicated by increased formate dehydrogenase and enrichment of H2/formate-producing bacteria with their partner Methanospirillum hungatei. Moreover, the 5 % 13CH4 and methane contribution result show that CO2 accomplishes directed methanogenesis. Overall, this investigation riches the roles of CO2 and biochar in AD surrounding RET.


Asunto(s)
Dióxido de Carbono , Carbón Orgánico , Metano , Metano/metabolismo , Dióxido de Carbono/metabolismo , Carbón Orgánico/farmacología , Carbón Orgánico/química , Anaerobiosis , Transporte de Electrón , Methanospirillum/metabolismo , Propionatos/metabolismo
6.
Water Res ; 255: 121428, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38493742

RESUMEN

Zero-valent iron (ZVI) can facilitate methanogens of anaerobic digestion (AD). However, the impact of ZVI on the micro-energetic strategies of AD microorganisms remains uncertain. This study aimed to elucidate the development of an energy conservation model involving direct interspecies electron transfer (DIET) and electron bifurcate (EB) by using four types of ZVI. Overall, the ZVI addition resulted in a substantial increase in methane production (1.26 to 2.18 times higher), and the effect of boron (B) doped ZVI was particularly pronounced. The underlying mechanism may be the formation of energy harvest pathway related to DIET. In detail, B-doped ZVI could enhance its interfacial binding to cytochrome c. Decreased polar solvation energy from 20.473 to 1.509 kJ/mol is beneficial for electron transfer, thereby augmenting the flavin-bounded Cytc activity and DIET process. Besides, ZVI-enhanced EB enzyme activity like HdrA2B2C2-MvhAGD could improve the EB process, which can couple with DIET for electron transfer and energy conservation. Energy analysis based on EB-coupled DIET metabolism pathways demonstrated that the ATP saved in this coupled model theoretically line in 0.25 to 0.5 mol ATP/mol substrate. Overall, this study offers valuable insights into microbial energetic strategies pertaining to the utilization of conductive materials, with the target of enhancing methane recovery efficiency from organic waste.

7.
Sci Total Environ ; 923: 171346, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38438039

RESUMEN

As a novel agricultural practice, the reuse of food waste compost and digestate as fertilizers leads to a circular economy, but inevitably introduces bio-contaminants such as antibiotic resistance genes (ARGs) into the agroecosystem. Moreover, heavy metal and antibiotic contamination in farmland soil may exert selective pressures on the evolution of ARGs, posing threats to human health. This study investigated the fate, influencing mechanisms and potential risks of ARGs in a soil-vegetable system under different food waste fertilization and remediation treatments and soil contamination conditions. Application of food waste fertilizers significantly promoted the pakchoi growth, but resulted in the spread of ARGs from fertilizers to pakchoi. A total of 56, 80, 84, 41, and 73 ARGs, mobile genetic elements (MGEs) and metal resistance genes (MRGs) were detected in the rhizosphere soil (RS), bulk soil (BS), control soil (CS), root endophytes (RE), and leaf endophytes (LE), respectively. Notably, 7 genes were shared in the above five subgroups, indicating a specific soil-root-endophytes transmission pathway. 36 genes were uniquely detected in the LE, which may originate from airborne ARGs. The combined application of biochar and fertilizers reduced the occurrence of ARGs and MGEs to some extent, showing the remediation effect of biochar. The average abundance of ARGs in the RS, BS and CS was 3.15 × 10-2, 1.31 × 10-2 and 2.35 × 10-1, respectively. Rhizosphere effects may reduce the abundance of ARGs in soil. The distribution pattern of ARGs was influenced by the types of soil, endophyte and contaminant. MGEs is the key driver shaping ARGs dynamics. Soil properties and pakchoi growth status may affect the bacterial composition, and consequently regulate ARGs fate, while endophytic ARGs were more impacted by biotic factors. Moreover, the average daily doses of ARGs from pakchoi consumption is 107-109 copies/d/kg, and its potential health risks should be emphasized.


Asunto(s)
Carbón Orgánico , Compostaje , Eliminación de Residuos , Humanos , Antibacterianos/análisis , Suelo , Genes Bacterianos , Fertilizantes/análisis , Verduras , Alimento Perdido y Desperdiciado , Estiércol/microbiología , Microbiología del Suelo
8.
Environ Pollut ; 346: 123547, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387549

RESUMEN

Plastics ranging from nano-scale to micron-scale are frequently ingested by many marine animals. These particles exhibit biotoxicity and additionally perform as vectors that convey and amass adsorbed chemicals within organisms. Meanwhile, the frequency of detection of the benzophenone-3 and ciprofloxacin can be adsorbed on plastic particles, then accumulated in bivalves, causing biotoxicity. To understand their unknown accumulative kinetics in vivo affected by different plastic sizes and toxic effect from co-exposure, several scenarios were set up in which the mode organism were exposed to 0.6 mg/L of polystyrene carrying benzophenone-3 and ciprofloxacin in three sizes (300 nm, 38 µm, and 0.6 mm). The live Asian green mussels were chosen as mode organism for exposure experiments, in which they were exposed to environments with plastics of different sizes laden with benzophenone-3 and ciprofloxacin, then depurated for 7 days. The bioaccumulation and depuration kinetics of benzophenone-3 and ciprofloxacin were measured using HPLC-MS/MS after one week of exposure and depuration. Meanwhile, their toxic effect were investigated by measuring the changes in six biomarkers (condition index, reactive oxygen species, catalase, glutathione, lipid peroxidation, cytochrome P450 and DNA damage). The bioconcentration factors in mussels under different exposure conditions were 41.48-111.75 for benzophenone-3 and 6.45 to 12.35 for ciprofloxacin. The results suggested that microplastics and nanoplastics can act as carriers to increase bioaccumulation and toxicity of adsorbates in mussels in a size-dependent manner. Overproduction of reactive oxygen species caused by microplastics and nanoplastics led to increased DNA damage, lipid peroxidation, and changes in antioxidant enzymes and non-enzymatic antioxidants during exposure. Marked disruption of antioxidant defenses and genotoxic effects in mussels during depuration indicated impaired recovery. Compared to micron-scale plastic with sizes over a hundred micrometers that had little effect on bivalve bioaccumulation and toxicity, nano-scale plastic greatly enhanced the biotoxicity effect.


Asunto(s)
Benzofenonas , Perna , Contaminantes Químicos del Agua , Animales , Microplásticos , Antioxidantes/farmacología , Plásticos/toxicidad , Bioacumulación , Especies Reactivas de Oxígeno , Ciprofloxacina/toxicidad , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
9.
Environ Pollut ; 342: 123132, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081377

RESUMEN

Utilizing digestate as a fertilizer enhances soil nutrient content, improves fertility, and minimizes nutrient runoff, mitigating water pollution risks. This alternative approach replaces commercial fertilizers, thereby reducing their environmental impact and lowering greenhouse gas emissions associated with fertilizer production and landfilling. Herein, this study aimed to evaluate the impact of various soil amendments, including carbon fractions from waste materials (biochar, compost, and cocopeat), and food waste anaerobic digestate application methods on tomato plant growth (Solanum lycopersicum) and soil fertility. The results suggested that incorporating soil amendments (biochar, compost, and cocopeat) into the potting mix alongside digestate application significantly enhances crop yields, with increases ranging from 12.8 to 17.3% compared to treatments without digestate. Moreover, the combination of soil-biochar amendment and digestate application suggested notable improvements in nitrogen levels by 20.3% and phosphorus levels by 14%, surpassing the performance of the those without digestate. Microbial analysis revealed that the soil-biochar amendment significantly enhanced biological nitrification processes, leading to higher nitrogen levels compared to soil-compost and soil-cocopeat amendments, suggesting potential nitrogen availability enhancement within the rhizosphere's ecological system. Chlorophyll content analysis suggested a significant 6.91% increase with biochar and digestate inclusion in the soil, compared to the treatments without digestate. These findings underscore the substantial potential of crop cultivation using soil-biochar amendments in conjunction with organic fertilization through food waste anaerobic digestate, establishing a waste-to-food recycling system.


Asunto(s)
Eliminación de Residuos , Suelo , Fertilizantes/análisis , Agricultura/métodos , Alimentos , Carbón Orgánico , Nitrógeno/análisis , Nutrientes/análisis
10.
Sci Total Environ ; 912: 169249, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38081424

RESUMEN

Harmful algal blooms (HABs) are a threat to freshwater systems over the world due to the production of hepatotoxins like microcystin (MC), and nuisance taste and odour (T&O) compounds like 2-methylisoborneol (MIB). While MCs are known to cause detrimental effects to both water quality and human health, MIB is only reported to cause aesthetical problems. In this study, we investigated a tropical, urban lake that was experiencing persistent MC and MIB events. Although it was dominated by Microcystis blooms, analysis revealed that the toxigenic Microcystis were not the only species driving the MC concentrations. Additionally, there was also a lack of causative species for the MIB events. Through isolation, we have identified three toxigenic Microcystis found to produce four different variants of MCs, and two novel non-toxigenic Microcystis that were capable of producing MIB. The ability to produce MIB had never been previously reported for this species. Compared to other major producers such as Planktothricoides sp. and Streptomyces sp., the MIB synthase genes of our Microcystis sp. strains were partial, illustrating the possibility of unique synthesis pathways. The Microcystis sp. strains were found to produce about 2.77-5.22 fg MIB cell-1, with a majority of the contents (70-80 %) existing in the extracellular phase. Correlation analysis of field study indicated that phosphorus limitation may have an indirect effect on non-toxigenic Microcystis abundance and proportion by influencing the toxigenic genotype, suggesting that current measures to control HABs may favour the proliferation of the non-toxigenic Microcystis. The potential for Microcystis sp. to produce MIB through unique synthesis pathway, coupled with the potential dominance of non-toxigenic genotypes in Microcystis blooms, signals the possibility that non-toxigenic Microcystis should be monitored as well.


Asunto(s)
Cianobacterias , Microcystis , Humanos , Microcystis/genética , Microcystis/metabolismo , Lagos/análisis , Cianobacterias/genética , Microcistinas/análisis , Floraciones de Algas Nocivas , Genotipo
11.
Environ Res ; 244: 117946, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38104915

RESUMEN

The industrialization of hydrogen production through dark fermentation of food waste faces challenges, such as low yields and unpredictable fermentation processes. Biochar has emerged as a promising green additive to enhance hydrogen production in dark fermentation. Our study demonstrated that the introduction of Fe-modified biochar (Fe-L600) significantly boosted hydrogen production during thermophilic dark fermentation of food waste. The addition of Fe-L600 led to a remarkable 31.19% increase in hydrogen yield and shortened the time needed for achieving stabilization of hydrogen production from 18 h to 12 h. The metabolite analysis revealed an enhancement in the butyric acid pathway as the molar ratio of acetic acid to butyric acid decreased from 3.09 to 2.69 but hydrogen yield increased from 57.12 ± 1.48 to 76.78 ± 2.77 mL/g, indicating Fe-L600 improved hydrogen yield by regulating crucial metabolic pathways of hydrogen production. The addition of Fe-L600 also promoted the release of Fe2+ and Fe3+ and increased the concentrations of Fe2+ and Fe3+ in the fermentation system, which might promote the activity of hydrogenase and ferredoxin. Microbial community analysis indicated a substantial increase in the relative abundance of Thermoanaerobacterium after thermophilic dark fermentation. The relative abundances of microorganisms responsible for hydrolysis and acidogenesis were also observed to be improved in the system with Fe-L600 addition. This research provides a feasible strategy for improving hydrogen production of food waste and deepens the understanding of the mechanisms of biochar.


Asunto(s)
Carbón Orgánico , Alimento Perdido y Desperdiciado , Eliminación de Residuos , Fermentación , Alimentos , Ácido Butírico , Hidrógeno/metabolismo
12.
Mitochondrial DNA B Resour ; 8(8): 826-830, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545555

RESUMEN

Sphaeropleales have the characteristics of rapid growth, high oil content, and efficient removal rates of nitrogen and phosphorus in sewage waters, and is potentially valuable in biodiesel production and environmental remediation. In this study, we isolated a strain of Sphaeropleales, Chlorolobion braunii strain ITBB-AG6 from an azolla community in a sewage pond. Its mitochondrial genome contains 110,124 bp and harbors at least 40 genes, including 15 protein-coding genes, 20 tRNA genes, and three rRNA genes. The protein-coding genes include two for ATP synthases, seven for NAD(P)H-quinone oxidoreductases (nad), three for cytochrome c oxidase subunits (coxs), and one for cytochrome b (cob). Transfer RNA genes for 18 amino acids were identified, in which the tRNA genes for leucine and serine are doubled, but the tRNA genes for threonine and valine are not annotated. Phylogenetic analysis using the mitochondrial genomes of seven families of Sphaeropleales indicated that ITBB-AG6 is closely related to Monoraphidium neglectum, and falls in the family Selenastraceae with 100% bootstrap support. Two species in the family Neochloridaceae are separated by a species in Hydrodictyaceae, indicating a polyphyletic nature. These findings revealed the complicated phylogenetic relationships of the Sphaeropleales and the necessity of genome sequences in the taxonomy of microalgae.

13.
J Hazard Mater ; 458: 132058, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37459761

RESUMEN

Antibiotic resistant Enterobacteriaceae pose a significant threat to public health. However, limited studies have evaluated the health risks associated with exposure to antibiotic-resistant bacteria (ARB), especially in natural environments. While quantitative microbial risk assessment (QMRA) assesses microbial risks in terms of the probability of infection, it does not account for the severity of health outcomes. In this study, a QMRA-DALY model was developed to integrate QMRA with health burden (disability-adjusted life years (DALY)) from infections caused by ARB. The model considers uncertainties in probability of infection and health burden assessment using Monte Carlo simulations. The study collected antimicrobial resistance (AMR) surveillance data from surface waters with different land uses. Results revealed water bodies with agricultural land use to be the main AMR hotspots, with the highest additional health burden observed in infections caused by meropenem-resistant E. coli (∆DALY = 0.0105 DALY/event) compared to antibiotic-susceptible E. coli. The estimated ∆DALY for antibiotic-resistant K. pneumoniae was lower than for antibiotic-resistant E. coli (highest ∆DALY = 0.00048 DALY/event). The study highlights the need for better evaluation of AMR associated health burden, and effective measures to mitigate the risks associated with antibiotic-resistant bacteria in natural environments.


Asunto(s)
Enterobacteriaceae , Escherichia coli , Años de Vida Ajustados por Calidad de Vida , Antagonistas de Receptores de Angiotensina , Años de Vida Ajustados por Discapacidad , Inhibidores de la Enzima Convertidora de Angiotensina , Medición de Riesgo , Antibacterianos
14.
Environ Sci Technol ; 57(28): 10448-10457, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37418182

RESUMEN

Anaerobic microorganisms use flavin/quinone-based electronic bifurcation (EB) to gain a survival advantage at the thermodynamic limits. However, the contribution of EB to microscopic energy and productivity in the anaerobic digestion (AD) system is unknown. This study demonstrates for the first time that under limited substrate conditions, Fe-driven EB in AD leads to a 40% increase in specific methane production and contributes to 25% ATP accumulation, by analyzing the concentration of EB enzymes such as Etf-Ldh, HdrA2B2C2, and Fd, NADH and actual Gibbs free-energy changes. Differential pulse voltammetry and electron respiratory chain inhibition experiments detected that iron enhanced electron transport in EB by accelerating the activity of flavin, Fe-S clusters, and quinone groups. Other microbial and enzyme genes with EB potential closely related to iron transport have also been found in metagenomes. The potential of EB to accumulate energy and enhance productivity in AD systems was investigated, and metabolic pathways were proposed in the study.


Asunto(s)
Ácido Láctico , Quinonas , Ácido Láctico/metabolismo , Anaerobiosis , Flavinas/metabolismo , Hierro , Metano , Reactores Biológicos
15.
Sci Total Environ ; 896: 165230, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37400026

RESUMEN

As anthropogenic induced temperature rises and nutrient loadings increase in fresh and brackish environments, the ecological function of the phytoplankton community is expected to favour the picocyanobacteria, of the genus Synechococcus. Synechococcus is already a ubiquitous cyanobacterium found in both freshwater and marine environments, notwithstanding that the toxigenic species still remains unexplored in many freshwaters. Their fast growth rate and their ability to produce toxins make Synechococcus a potential dominant player in harmful algal blooms under climate change scenarios. This study examines the responses of a novel toxin-producing Synechococcus (i.e., one belonging to a freshwater clade; the other belonging to a brackish clade) to environmental changes that reflect climate change effects. We conducted a series of controlled experiments under present and predicted future temperatures, as well as under various N and P nutrients loadings. Our findings highlight how Synechococcus can be altered by the differing reactions to increasing temperature and nutrients, which resulted in considerable variations in cell abundance, growth rate, death rate, cellular stoichiometry and toxin production. Synechococcus had the highest growth observed at 28 °C, and further increases in temperature resulted in a decline for both fresh and brackish waters. Cellular stoichiometry was also altered, where more nitrogen (N) per cell was required, and the plasticity of N:P was more severe for the brackish clade. However, Synechococcus become more toxic under future scenario. Anatoxin-a (ATX) saw the greatest spike when temperature was at 34 °C especially under P-enrichment conditions. In contrast, Cylindrospermopsin (CYN) was promoted at the lowest tested temperature (25 °C) and under N-limitation. Overall, both temperature and external nutrients are the dominant control over Synechococcus toxins production. A model was also created to assess Synechococcus toxicity to zooplankton grazing. Zooplankton grazing was reduced by two folds under nutrient limitation, but temperature accounted for very insignificant change.


Asunto(s)
Synechococcus , Synechococcus/fisiología , Fitoplancton/fisiología , Floraciones de Algas Nocivas , Temperatura , Frío
16.
Environ Sci Technol ; 57(29): 10828-10837, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37427988

RESUMEN

Humic acid (HA) has attracted much attention for its electron-competitive effect of quinone groups on anaerobic methanogenesis. This study analyzed the biological "capacitor" to determine how it might effectively reduce electron competition. As biological capacitor-producing additives, three semiconductive materials, including magnetite, hematite, and goethite, were selected. The results showed that hematite and magnetite could significantly alleviate the inhibited methanogenesis caused by the HA model compound anthraquinone-2,6-disulfonate (AQDS). The electrons flowing to methane in hematite-AQDS, magnetite-AQDS, control, sole-AQDS, and goethite-AQDS groups accounted for 81.24, 77.12, 75.42, 70.55, and 56.32% of the total produced electrons, respectively. Hematite addition significantly accelerated the methane production rate (18.97%) compared with sole-AQDS. Electrochemical investigation showed that AQDS might have its oxidation potential reduced by adsorbing on hematite, which results in an energy band bending for hematite and the formation of a biological capacitor. The biological capacitor's integrated electric field helps with the transfer of electrons from reduced AQDS to anaerobic consortia via bulk hematite. Metagenomic and metaproteomic sequencing analyses revealed that the ferredoxin and Mph-reducing hydrogenase in hematite addition increased by 7.16 and 21.91%, respectively, compared to sole-AQDS addition. Accordingly, this research suggested that AH2QDS may re-transfer electrons to methanogens via the biological capacitor and the membrane's Mph-reducing hydrogenase, thus lowering the HA electron competition.


Asunto(s)
Sustancias Húmicas , Hidrogenasas , Transporte de Electrón , Óxido Ferrosoférrico , Anaerobiosis , Oxidación-Reducción , Antraquinonas , Metano
17.
Bioresour Technol ; 385: 129354, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37336453

RESUMEN

This study investigated the fate of antibiotic resistance genes (ARGs) and bacterial evolution in six industrial-scale organic wastes aerobic composting plants and identified key factors driving ARGs dynamics. A total of 226 ARGs and 46 mobile genetic elements (MGEs), mainly resistant to aminoglycoside and MLSB, were detected by high-throughput qPCR. Briefly, aerobic composting showed good performance in reducing the diversity and abundance of ARGs, where the total absolute abundance was reduced by 88.34%-97.08% except for cattle manures. Rapid composting may lead to a rebound of ARGs due to long-term storage compared to traditional composting. Hub ARGs and bacterial genera were screened out by co-occurrence patterns. As the dominant phyla in composting, the main potential hosts of ARGs were Firmicutes, Bacteroidota and Proteobacteria. Structural equation model indicated that MGEs and heavy metals were key factors affecting ARGs dynamics. In addition, nutrients and bacterial α-diversity can indirectly influence ARGs by affecting MGEs.


Asunto(s)
Compostaje , Genes Bacterianos , Animales , Bovinos , Genes Bacterianos/genética , Antibacterianos/farmacología , Antibacterianos/análisis , Residuos Industriales/análisis , Bacterias , Estiércol/microbiología
18.
Sci Total Environ ; 892: 164514, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37270000

RESUMEN

Phosphorus plays a crucial role in modern society but often pollutes the environment through raising eutrophication and has particularly devastating effects on the water environment. As a promising material platform, the three-dimensional network structure and the tailorable nature of hydrogels provide infinite application possibilities. Thereinto, phosphate removal and recovery from wastewater using hydrogel materials have gained momentum since their rapid reactivity, ease of operation, low cost and simplicity of recovery compared to traditional techniques. In this review, current strategies for functional enhancement of hydrogel materials are systematically summarized from different perspectives. Following, based on the discussion of different interaction mechanisms between phosphates and hydrogels, the phosphate mass transfer and performance of hydrogels and their current application are critically reviewed. This review aims to present mechanistic insight into the recent development in phosphate removal and recovery using hydrogel materials and provides new ideas for constructing high-efficient hydrogels and laying the foundations for the practical application of this technology.


Asunto(s)
Hidrogeles , Aguas Residuales , Hidrogeles/química , Fosfatos , Fósforo , Tecnología , Adsorción
19.
Environ Pollut ; 333: 122018, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37315882

RESUMEN

Microplastics (MPs) are emerging pollutants with diverse sizes in aquatic environments. This paper investigates the toxicity of micron- and nano-scale polystyrene (50 µm, 5 µm, 0.5 µm) loaded with 2-hydroxy-4-methoxy-benzophenone (BP-3) and ciprofloxacin (CIP) by eight biomarker responses in mussels, perna viridis. The mussels were exposed to MPs and chemicals for 7 days before 7 days of depuration. Eight biomarkers were measured to determine biotoxicity over time by using the weighted integrated biomarkers index evaluation (EIBR). Mussels exposed to MPs on a daily basis demonstrated a cumulative toxic effect. The toxicity of MPs for mussels was inversely related to the size at which they can be ingested. Then toxicity was reversed when exposure was halted. EIBR mold has shown a significant difference in the biotoxicity of each biological level under different exposure scenarios. In general, the mussel toxicity influenced by BP-3 and CIP exposure without an adsorbent was insignificant. MPs laden with them increased the toxicity of mussels. Under condition of lower concentration of ECs (Emerging contaminants), the presence of MPs as a component of a combined pollutant in water dominated the biotoxicity for mussels. The EIBR assessment further validated that the biotoxicity of mussels was size-dependent. Its application simplified the biomarkers' response index and enhanced the accuracy of evaluation by weighing on molecular, cellular and physiological level. Specifically, mussels were physiologically sensitive to nano-scale plastics, with nano-scale plastics causing a higher level of cellular immunity destruction and genotoxicity than micron-scale plastics. Enzymatic antioxidant systemswere upregulated based on size-differential plastics; however, the total antioxidant effect of non-enzymatic defenses appeared to be least affected by the size effect.


Asunto(s)
Bivalvos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos/toxicidad , Benzofenonas/toxicidad , Biomarcadores , Poliestirenos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
20.
Environ Int ; 176: 107986, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37257204

RESUMEN

Antibiotic resistance genes (ARGs) have been widely found and studied in soil and water environments. However, the propagation of ARGs in plant microbiomes has attracted insufficient attention. Plant microbiomes, especially the rhizosphere microorganisms, are closely connected with water, soil, and air, which allows ARGs to spread widely in ecosystems and pose a threat to human health after entering the human body with bacteria. Therefore, it is necessary to deeply understand and explore the dynamics and the transmission of ARGs in rhizosphere microorganisms and endophytes of plants. In this review, the transmission and influencing factors of ARGs in the microorganisms associated with plants, especially the influence of root exudates on plant microbiomes, are analyzed. Notably, the role of intrinsic genes of plants in determining root exudates and their potential effects on ARGs are proposed and analyzed. The important role of phyllosphere microorganisms and endophytes in the transmission of ARGs and co-resistance of antibiotics and other substances are also emphasized. The proliferation and transmission of ARGs associated with plant microbiomes addressed in this review is conducive to revealing the fate of ARGs in plant microorganisms and alleviating ARG pollution.


Asunto(s)
Bacterias , Microbiota , Humanos , Bacterias/genética , Genes Bacterianos , Farmacorresistencia Microbiana/genética , Suelo , Antibacterianos/farmacología , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA