Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Rice (N Y) ; 17(1): 47, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102064

RESUMEN

Rice grain is widely consumed as a staple food, providing essential nutrition for households, particularly marginalized families. It plays a crucial role in ensuring food security, promoting human nutrition, supporting good health, and contributing to global food and nutritional security. Addressing the diverse quality demands of emerging diverse and climate-risked population dietary needs requires the development of a single variety of rice grain that can meet the various dietary and nutritional requirements. However, there is a lack of concrete definition for rice grain quality, making it challenging to cater to the different demands. The lack of sufficient genetic study and development in improving rice grain quality has resulted in widespread malnutrition, hidden hunger, and micronutrient deficiencies affecting a significant portion of the global population. Therefore, it is crucial to identify genetically evolved varieties with marked qualities that can help address these issues. Various factors account for the declining quality of rice grain and requires further study to improve their quality for healthier diets. We characterized rice grain quality using Lancastrians descriptor and a multitude of intrinsic and extrinsic quality traits. Next, we examined various components of rice grain quality favored in the Asia-Pacific region. This includes preferences by different communities, rice industry stakeholders, and value chain actors. We also explored the biological aspects of rice grain quality in the region, as well as specific genetic improvements that have been made in these traits. Additionally, we evaluated the factors that can influence rice grain quality and discussed the future directions for ensuring food and nutritional security and meeting consumer demands for grain quality. We explored the diverse consumer bases and their varied preferences in Asian-Pacific countries including India, China, Nepal, Bhutan, Vietnam, Sri Lanka, Pakistan, Thailand, Cambodia, Philippines, Bangladesh, Indonesia, Korea, Myanmar and Japan. The quality preferences encompassed a range of factors, including rice head recovery, grain shape, uniform size before cooking, gelatinization, chalkiness, texture, amylose content, aroma, red-coloration of grain, soft and shine when cooked, unbroken when cooked, gelatinization, less water required for cooking, gelatinization temperature (less cooking time), aged rice, firm and dry when cooked (gel consistency), extreme white, soft when chewed, easy-to-cook rice (parboiled rice), vitamins, and minerals. These preferences were evaluated across high, low, and medium categories. A comprehensive analysis is provided on the enhancement of grain quality traits, including brown rice recovery, recovery rate of milled rice, head rice recovery, as well as morphological traits such as grain length, grain width, grain length-width ratio, and grain chalkiness. We also explored the characteristics of amylose, gel consistency, gelatinization temperature, viscosity, as well as the nutritional qualities of rice grains such as starch, protein, lipids, vitamins, minerals, phytochemicals, and bio-fortification potential. The various factors that impact the quality of rice grains, including pre-harvest, post-harvest, and genotype considerations were explored. Additionally, we discussed the future direction and genetic strategies to effectively tackle these challenges. These qualitative characteristics represent the fundamental focus of regional and national breeding strategies employed by different countries to meet consumer preference. Given the significance of rice as a staple food in Asia-Pacific countries, it is primarily consumed domestically, with only a small portion being exported internationally. All the important attributes must be clearly defined within specific parameters. It is crucial for geneticists and breeders to develop a rice variety that can meet the diverse demands of consumers worldwide by incorporating multiple desirable traits. Thus, the goal of addressing global food and nutritional security, and human healthy can be achieved.

2.
Nutrients ; 16(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39064741

RESUMEN

Postpartum women present a high risk of disordered eating behaviors, but the heterogeneity between groups was not identified. This cross-sectional study aimed to identify eating styles profiles in postpartum women and explore the correlates based on demographic characteristics and psychosocial factors. Questionnaires were administered to 507 Chinese postpartum women. Latent profile analysis (LPA) was conducted to identify eating styles profiles. Multinomial logistic regression was used to investigate the correlates of these profiles among postpartum women. The LPA identified three eating styles profiles: postpartum women with low emotional, external, and restrained eating (Profile 1, 6.9%); postpartum women with medium emotional, external, and restrained eating (Profile 2, 66.1%); and postpartum women with high emotional, external, and restrained eating (Profile 3, 27.0%). Compared to Profile 1, higher postpartum depression (PPD) and body mass index (BMI) were more likely to be associated with Profile 2 and Profile 3, whereas higher postpartum weight retention (PPWR) was more likely to be associated with Profile 1. Compared to Profile 2, higher PPD and BMI were more likely associated with Profile 3. Disordered eating behaviors in postpartum women with three eating styles were associated with BMI, PPD, and PPWR. This study can guide healthcare professionals in developing targeted interventions to improve maternal and child health globally.


Asunto(s)
Índice de Masa Corporal , Conducta Alimentaria , Periodo Posparto , Humanos , Femenino , Periodo Posparto/psicología , Adulto , Estudios Transversales , Conducta Alimentaria/psicología , China , Depresión Posparto/psicología , Depresión Posparto/epidemiología , Encuestas y Cuestionarios , Trastornos de Alimentación y de la Ingestión de Alimentos/psicología , Trastornos de Alimentación y de la Ingestión de Alimentos/epidemiología , Adulto Joven , Pueblo Asiatico , Pueblos del Este de Asia
3.
Sensors (Basel) ; 24(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39066046

RESUMEN

The timely detection of falls and alerting medical aid is critical for health monitoring in elderly individuals living alone. This paper mainly focuses on issues such as poor adaptability, privacy infringement, and low recognition accuracy associated with traditional visual sensor-based fall detection. We propose an infrared video-based fall detection method utilizing spatial-temporal graph convolutional networks (ST-GCNs) to address these challenges. Our method used fine-tuned AlphaPose to extract 2D human skeleton sequences from infrared videos. Subsequently, the skeleton data was represented in Cartesian and polar coordinates and processed through a two-stream ST-GCN to recognize fall behaviors promptly. To enhance the network's recognition capability for fall actions, we improved the adjacency matrix of graph convolutional units and introduced multi-scale temporal graph convolution units. To facilitate practical deployment, we optimized time window and network depth of the ST-GCN, striking a balance between model accuracy and speed. The experimental results on a proprietary infrared human action recognition dataset demonstrated that our proposed algorithm accurately identifies fall behaviors with the highest accuracy of 96%. Moreover, our algorithm performed robustly, identifying falls in both near-infrared and thermal-infrared videos.


Asunto(s)
Accidentes por Caídas , Algoritmos , Rayos Infrarrojos , Redes Neurales de la Computación , Grabación en Video , Humanos , Grabación en Video/métodos
4.
Microbes Infect ; : 105399, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39084397

RESUMEN

The Drosophila Imd pathways are well-known mechanisms involved in innate immunity responsible for Gram-negative (G-) bacterial infection. The intensity and durability of immunity need to be finely regulated to keep sufficient immune activation meanwhile avoid excessive immune response. In this study, we firstly demonstrated that miR-190 can downregulate the expression levels of antimicrobial peptides (AMPs) in the Imd immune pathway after Escherichia coli infection using the miR-190 overexpression flies and the miR-190KO/+ flies. Secondly, miR-190 overexpression significantly reduces while miR-190 KO increases Drosophila survival rates upon lethal Enterobacter cloacae infection. Thirdly, we further demonstrated that miR-190 negatively regulates innate immune responses by directly targeting both RA/RB and RC isoforms of Tab2. In addition, the dynamic expression pattern of AMPs (Dpt, AttA, CecA1), miR-190 and Tab2 in the wild-type flies reveals that miR-190 play an important role in Drosophila immune homeostasis restoration at the late stage of E. coli infection. Collectively, our study reveals that miR-190 can downregulate the expression of AMPs by targeting Tab2 and promote immune homeostasis restoration in Drosophila Imd pathway. Our study provides new insights into the regulatory mechanism of animal innate immune homeostasis.

5.
J Nutr Biochem ; 133: 109703, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39025457

RESUMEN

Sestrin2 is a highly conserved protein that can be induced under various stress conditions. Researches have revealed that the signaling pathway of the mammalian target of rapamycin (mTOR) is essential in modulating both glucose and lipid metabolism. However, the precise involvement of Sestrin2 in the hypothalamus, particularly in pro-opiomelanocortin (POMC) neurons, in control of energy homeostasis remains uncertain. In this study, we aimed to investigate the functional role of Sestrin2 in hypothalamic POMC neurons in regulation of energy balance, as well as revealing the underlying mechanisms. Therefore, cre-dependent AAV virus encoding or silencing Sestrin2 was injected into the hypothalamic ARC of pomc-cre transgenic mice. The results demonstrated that Sestrin2 overexpression in POMC neurons ameliorated high-fat diet (HFD)-induced obesity and increased energy expenditure. Conversely, Sestrin2 deficiency in POMC neurons predisposed mice to HFD induced obesity. Additionally, the thermogenesis of brown adipose tissue and lipolysis of inguinal white adipose tissue were both enhanced by the increased sympathetic nerve innervation in Sestrin2 overexpressed mice. Further exploration revealed that Sestrin2 overexpression inhibited the mTOR signaling pathway in hypothalamic POMC neurons, which may account for the alleviation of systematic metabolic disturbance induced by HFD in these mice. Collectively, our findings demonstrate that Sestrin2 in POMC neurons plays a pivotal role in maintaining energy balance in a context of HFD-induced obesity by inhibiting the mTOR pathway, providing new insights into how hypothalamic neurons respond to nutritional signals to protect against obesity-associated metabolic dysfunction.

6.
Nano Lett ; 24(29): 8887-8893, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38984749

RESUMEN

The synthesis of transition metal nitrides nanocrystals (TMNs NCs) has posed a significant challenge due to the limited reactivity of nitrogen sources at lower temperatures and the scarcity of available synthesis methods. In this study, we present a novel colloidal synthesis strategy for the fabrication of Cu3N nanorods (NRs). It is found that the trace oxygen (O2) plays an important role in the synthesis process. And a new mechanism for the formation of Cu3N is proposed. Subsequently, by employing secondary lateral epitaxial growth, the Cu3N-Cu2O heteronanostructures (HNs) can be prepared. The Cu3N NRs and Cu3N-Cu2O HNs were evaluated as precursor electrocatalysts for the CO2 reduction reaction (CO2RR). The Cu3N-Cu2O HNs demonstrate remarkable selectivity and stability with ethylene (C2H4) Faradaic efficiency (FE) up to 55.3%, surpassing that of Cu3N NRs. This study provides innovative insights into the reaction mechanism of colloidal synthesis of TMNs NCs and presents alternative options for designing cost-effective electrocatalysts to achieve carbon neutrality.

7.
J Phys Condens Matter ; 36(37)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38843804

RESUMEN

Super microgenerator (SMG) refers to a generator that can efficiently convert extremely weak external stimuli into electrical energy and has a small size, high power density and long lifespan, offer ground-breaking solutions for powering wearable devices, wireless distributed sensors and implanted medical equipment. However, the friction and wear between the interfaces of ordinary microgenerator results in an extremely low lifespan. Here, we present a prototype of SMGs based on a 2D-2D (graphite-MoS2) Schottky contact in the state of structural superlubricity (no wear and nearly zero friction between two contacted solid surfaces). What is even more interesting is when the graphite flake is slid from the bulk to the edge of MoS2, the output current will enhance from 31 to 56 A m-2. Through the I-V curve measurement, we found that the conductive channel across the junction can be activated and further enhanced at the edge of MoS2compare to bulk, which provide the explanation for the above-mentioned edge enhancement of power generation. Above results provide the design principles of high-performance SMGs based on 2D-2D Schottky junctions.

8.
Plant Biotechnol J ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943653

RESUMEN

Grain chalkiness is an undesirable trait that negatively regulates grain yield and quality in rice. However, the regulatory mechanism underlying chalkiness is complex and remains unclear. We identified a positive regulator of white-belly rate (WBR). The WBR7 gene encodes sucrose synthase 3 (SUS3). A weak functional allele of WBR7 is beneficial in increasing grain yield and quality. During the domestication of indica rice, a functional G/A variation in the coding region of WBR7 resulted in an E541K amino acid substitution in the GT-4 glycosyltransferase domain, leading to a significant decrease in decomposition activity of WBR7A (allele in cultivar Jin23B) compared with WBR7G (allele in cultivar Beilu130). The NIL(J23B) and knockout line NIL(BL130)KO exhibited lower WBR7 decomposition activity than that of NIL(BL130) and NIL(J23B)COM, resulting in less sucrose decomposition and metabolism in the conducting organs. This caused more sucrose transportation to the endosperm, enhancing the synthesis of storage components in the endosperm and leading to decreased WBR. More sucrose was also transported to the anthers, providing sufficient substrate and energy supply for pollen maturation and germination, ultimately leading to an increase rate of seed setting and increased grain yield. Our findings elucidate a mechanism for enhancing rice yield and quality by modulating sucrose metabolism and allocation, and provides a valuable allele for improved rice quality.

9.
Theor Appl Genet ; 137(7): 162, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884792

RESUMEN

KEY MESSAGE: OsCOL5, an ortholog of Arabidopsis COL5, is involved in photoperiodic flowering and enhances rice yield through modulation of Ghd7 and Ehd2 and interactions with OsELF3-1 and OsELF3-2. Heading date, also known as flowering time, plays a crucial role in determining the adaptability and yield potential of rice (Oryza sativa L.). CONSTANS (CO)-like is one of the most critical flowering-associated gene families, members of which are evolutionarily conserved. Here, we report the molecular functional characterization of OsCOL5, an ortholog of Arabidopsis COL5, which is involved in photoperiodic flowering and influences rice yield. Structural analysis revealed that OsCOL5 is a typical member of CO-like family, containing two B-box domains and one CCT domain. Rice plants overexpressing OsCOL5 showed delayed heading and increases in plant height, main spike number, total grain number per plant, and yield per plant under both long-day (LD) and short-day (SD) conditions. Gene expression analysis indicated that OsCOL5 was primarily expressed in the leaves and stems with a diurnal rhythm expression pattern. RT-qPCR analysis of heading date genes showed that OsCOL5 suppressed flowering by up-regulating Ghd7 and down-regulating Ehd2, consequently reducing the expression of Ehd1, Hd3a, RFT1, OsMADS14, and OsMADS15. Yeast two-hybrid experiments showed direct interactions of OsCOL5 with OsELF3-1 and OsELF3-2. Further verification showed specific interactions between the zinc finger/B-box domain of OsCOL5 and the middle region of OsELF3-1 and OsELF3-2. Yeast one-hybrid assays revealed that OsCOL5 may bind to the CCACA motif. The results suggest that OsCOL5 functions as a floral repressor, playing a vital role in rice's photoperiodic flowering regulation. This gene shows potential in breeding programs aimed at improving rice yield by influencing the timing of flowering, which directly impacts crop productivity.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Oryza , Fotoperiodo , Proteínas de Plantas , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/crecimiento & desarrollo , Flores/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo
10.
Front Cardiovasc Med ; 11: 1394453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873270

RESUMEN

Background: Mesenchymal stem cells (MSCs) have important research value and broad application prospects in cardiovascular diseases (CVDs). However, few bibliometric analyses on MSCs in cardiovascular diseases are available. This study aims to provide a thorough review of the cooperation and influence of countries, institutions, authors, and journals in the field of MSCs in cardiovascular diseases, with the provision of discoveries in the latest progress, evolution paths, frontier research hotspots, and future research trends in the regarding field. Methods: The articles related to MSCs in cardiovascular diseases were retrieved from the Web of Science. The bibliometric study was performed by CiteSpace and VOSviewer, and the knowledge map was generated based on data obtained from retrieved articles. Results: In our study, a total of 4,852 publications launched before August 31, 2023 were accessed through the Web of Science Core Collection (WoSCC) database via our searching strategy. Significant fluctuations in global publications were observed in the field of MSCs in CVDs. China emerged as the nation with the largest number of publications, yet a shortage of high-quality articles was noted. The interplay among countries, institutions, journals and authors is visually represented in the enclosed figures. Importantly, current research trends and hotspots are elucidated. Cluster analysis on references has highlighted the considerable interest in exosomes, extracellular vesicles, and microvesicles. Besides, keywords analysis revealed a strong emphasis on myocardial infarction, therapy, and transplantation. Treatment methods-related keywords were prominent, while keywords associated with extracellular vesicles gathered significant attention from the long-term perspective. Conclusion: MSCs in CVDs have become a topic of active research interest, showcasing its latent value and potential. By summarizing the latest progress, identifying the research hotspots, and discussing the future trends in the advancement of MSCs in CVDs, we aim to offer valuable insights for considering research prospects.

11.
Bioresour Technol ; 406: 131016, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906195

RESUMEN

The salt-tolerant microalgae are extremely few and salt-tolerance mechanism is unclear, requiring urgent exploration of salt-tolerance mechanism of known microalgae. This study was first to reveal the salt-tolerance mechanism of Golenkinia sp. SDEC-16 by investigating the growth and metabolism under different salinities and high salinity long-term cultivation. SDEC-16 can survive under high salinity and resume normal growth after NaCl removal. Under long-term stress, SDEC-16 had higher lipid content and productivity than BG11. However, the suppressed Fv/Fm (58.4%) and Fv/F0 (84.0%) along with the increased reactive oxygen species (×6.6), and superoxide dismutase (×1.7) during the treatment revealed NaCl-induced photosynthetic inhibition and oxidative stress. RNA sequencing results showed inhibition of the photosynthetic system, and the enhancement of pathways such as nitrogen metabolism, energy metabolism, and lipid synthesis contributed to the good function of chloroplast, energy supply, and metabolic activity of SDEC-16. This study provides theoretical support for large-scale microalgal cultivation in seawater.


Asunto(s)
Microalgas , Fotosíntesis , Cloruro de Sodio , Microalgas/efectos de los fármacos , Microalgas/metabolismo , Cloruro de Sodio/farmacología , Fotosíntesis/efectos de los fármacos , Tolerancia a la Sal/efectos de los fármacos , Salinidad , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
12.
J Exp Clin Cancer Res ; 43(1): 147, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769583

RESUMEN

A century ago, the Warburg effect was first proposed, revealing that cancer cells predominantly rely on glycolysis during the process of tumorigenesis, even in the presence of abundant oxygen, shifting the main pathway of energy metabolism from the tricarboxylic acid cycle to aerobic glycolysis. Recent studies have unveiled the dynamic transfer of mitochondria within the tumor microenvironment, not only between tumor cells but also between tumor cells and stromal cells, immune cells, and others. In this review, we explore the pathways and mechanisms of mitochondrial transfer within the tumor microenvironment, as well as how these transfer activities promote tumor aggressiveness, chemotherapy resistance, and immune evasion. Further, we discuss the research progress and potential clinical significance targeting these phenomena. We also highlight the therapeutic potential of targeting intercellular mitochondrial transfer as a future anti-cancer strategy and enhancing cell-mediated immunotherapy.


Asunto(s)
Mitocondrias , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/terapia , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Mitocondrias/metabolismo , Microambiente Tumoral , Animales , Nanotubos
13.
Mar Pollut Bull ; 203: 116421, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38713927

RESUMEN

Intensive aquaculture production generates large amounts of sludge. This waste could be considered as a potential source of nutrients that can be recovered and utilized. Little attention has been paid to nutrient recovery from fish sludge. In this study, bioconversion of sludge was evaluated in lab scale under anaerobic (AN), facultative anaerobic (FA) and aerobic (AE) conditions. After 40 days of fermentation, AN recovered the highest values of dissolved total nitrogen (82.7 mg L-1), while AE showed the highest dissolved total phosphorus (11.8 mg L-1) and the highest reduction of total suspended solids (36.0 %). Microbial analysis showed that AN exhibited a distinct bacterial community than that of FA and AE. Furthermore, C. sorokiniana grown in AN effluents collected after 12 days of fermentation achieved the highest biomass production (1.96 g L-1). These results suggest that AN has the best potential to recover nutrients from sludge for production of C. sorokiniana.


Asunto(s)
Chlorella , Microalgas , Nitrógeno , Nutrientes , Fósforo , Aguas del Alcantarillado , Chlorella/crecimiento & desarrollo , Animales , Peces , Acuicultura , Eliminación de Residuos Líquidos/métodos , Biomasa , Anaerobiosis , Fermentación
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124501, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38796888

RESUMEN

A simple benzopyran-based fluorescence probe DCA-Apa detection of volatile amine has been synthesized. DCA-Apa can recognize volatile amines by dual channel mode (changing from blue to light yellow in sunlight, and from weak pink to orange under 365 nm) in pure water system. DCA-Apa has the advantages of ultra-fast response (∼6 s), NIR emission (655 nm), and a good fluorescence response for many amines. The sensing label or gel loaded with DCA-Apa was prepared by the dipping or mixing method using filter paper or gelatin as solid carriers, which can identify volatile amine vapor and monitor the freshness of salmon by colorimetric and fluorescent dual channels. When the color of the label changes to light yellow-green or the fluorescence of the label becomes orange fluorescence (365 nm UV lamp), it indicates that the fish has rotted. The two-channel method makes up for the deficiency of the single colorimetric method, and establishes a theoretical foundation for more precise assessment of fish freshness.


Asunto(s)
Aminas , Colorantes Fluorescentes , Alimentos Marinos , Espectrometría de Fluorescencia , Animales , Aminas/química , Aminas/análisis , Colorimetría/métodos , Peces , Colorantes Fluorescentes/química , Geles/química , Salmón , Espectrometría de Fluorescencia/métodos , Compuestos Orgánicos Volátiles/análisis , Alimentos Marinos/normas
15.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673733

RESUMEN

Grain size is a quantitative trait with a complex genetic mechanism, characterized by the combination of grain length (GL), grain width (GW), length to width ration (LWR), and grain thickness (GT). In this study, we conducted quantitative trait loci (QTL) analysis to investigate the genetic basis of grain size using BC1F2 and BC1F2:3 populations derived from two indica lines, Guangzhan 63-4S (GZ63-4S) and TGMS29 (core germplasm number W240). A total of twenty-four QTLs for grain size were identified, among which, three QTLs (qGW1, qGW7, and qGW12) controlling GL and two QTLs (qGW5 and qGL9) controlling GW were validated and subsequently fine mapped to regions ranging from 128 kb to 624 kb. Scanning electron microscopic (SEM) analysis and expression analysis revealed that qGW7 influences cell expansion, while qGL9 affects cell division. Conversely, qGW1, qGW5, and qGW12 promoted both cell division and expansion. Furthermore, negative correlations were observed between grain yield and quality for both qGW7 and qGW12. Nevertheless, qGW5 exhibited the potential to enhance quality without compromising yield. Importantly, we identified two promising QTLs, qGW1 and qGL9, which simultaneously improved both grain yield and quality. In summary, our results laid the foundation for cloning these five QTLs and provided valuable resources for breeding rice varieties with high yield and superior quality.


Asunto(s)
Mapeo Cromosómico , Grano Comestible , Oryza , Sitios de Carácter Cuantitativo , Oryza/genética , Oryza/crecimiento & desarrollo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Fenotipo , Cromosomas de las Plantas/genética , Semillas/genética , Semillas/crecimiento & desarrollo
16.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673973

RESUMEN

The quality of rice, evaluated using multiple quality-related traits, is the main determinant of its market competitiveness. In this study, two japonica rice varieties with significant differences in quality-related traits were used as parents to construct two populations, BC3F2 and BC3F2:3, with Kongyu131 (KY131) as the recurrent parent. A genetic linkage map was constructed using the BC3F2 population based on 151 pairs of SSR/InDel polymorphic markers selected between the parents. Grain-shape-related traits (grain length GL, grain width GW, and length-to-width ratio LWR), chalkiness-related traits (white-core rate WCR, white-belly rate WBR, white-back rate BR, and chalkiness rate CR), and amylose content (AC) were investigated in the two populations in 2017 and 2018. Except for BR and CR, the traits showed similar characteristics with a normal distribution in both populations. Genetic linkage analysis was conducted for these quality-related traits, and a total of 37 QTLs were detected in the two populations. Further validation was performed on the newly identified QTLs with larger effects, and three grain shape QTLs and four chalkiness QTLs were successfully validated in different environments. One repeatedly validated QTL, qWCR3, was selected for fine mapping and was successfully narrowed down to a 100 kb region in which only two genes, LOC_0s03g45210 and LOC_0s03g45320, exhibited sequence variations between the parents. Furthermore, the variation of LOC_Os03g45210 leads to a frameshift mutation and premature protein termination. The results of this study provide a theoretical basis for positional cloning of the qWCR3 gene, thus offering new genetic resources for rice quality improvement.


Asunto(s)
Mapeo Cromosómico , Ligamiento Genético , Oryza , Fenotipo , Sitios de Carácter Cuantitativo , Oryza/genética , Mapeo Cromosómico/métodos , Grano Comestible/genética , Cromosomas de las Plantas/genética , Genes de Plantas
18.
J Circadian Rhythms ; 22: 2, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617710

RESUMEN

Chronobiology investigations have revealed much about cellular and physiological clockworks but we are far from having a complete mechanistic understanding of the physiological and ecological implications. Here we present some unresolved questions in circadian biology research as posed by the editorial staff and guest contributors to the Journal of Circadian Rhythms. This collection of ideas is not meant to be comprehensive but does reveal the breadth of our observations on emerging trends in chronobiology and circadian biology. It is amazing what could be achieved with various expected innovations in technologies, techniques, and mathematical tools that are being developed. We fully expect strengthening mechanistic work will be linked to health care and environmental understandings of circadian function. Now that most clock genes are known, linking these to physiological, metabolic, and developmental traits requires investigations from the single molecule to the terrestrial ecological scales. Real answers are expected for these questions over the next decade. Where are the circadian clocks at a cellular level? How are clocks coupled cellularly to generate organism level outcomes? How do communities of circadian organisms rhythmically interact with each other? In what way does the natural genetic variation in populations sculpt community behaviors? How will methods development for circadian research be used in disparate academic and commercial endeavors? These and other questions make it a very exciting time to be working as a chronobiologist.

19.
Opt Express ; 32(6): 8751-8762, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571125

RESUMEN

The combination of surface coils and metamaterials remarkably enhance magnetic resonance imaging (MRI) performance for significant local staging flexibility. However, due to the coupling in between, impeded signal-to-noise ratio (SNR) and low-contrast resolution, further hamper the future growth in clinical MRI. In this paper, we propose a high-Q metasurface decoupling isolator fueled by topological LC loops for 1.5T surface coil MRI system, increasing the magnetic field up to fivefold at 63.8 MHz. We have employed a polarization conversion mechanism to effectively eliminate the coupling between the MRI metamaterial and the radio frequency (RF) surface transmitter-receiver coils. Furthermore, a high-Q metasurface isolator was achieved by taking advantage of bound states in the continuum (BIC) for extremely high-resolution MRI and spectroscopy. An equivalent physical model of the miniaturized metasurface design was put forward through LC circuit analysis. This study opens up a promising route for the easy-to-use and portable surface coil MRI scanners.

20.
Rice (N Y) ; 17(1): 19, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430431

RESUMEN

Sakuranetin plays a key role as a phytoalexin in plant resistance to biotic and abiotic stresses, and possesses diverse health-promoting benefits. However, mature rice seeds do not contain detectable levels of sakuranetin. In the present study, a transgenic rice plant was developed in which the promoter of an endosperm-specific glutelin gene OsGluD-1 drives the expression of a specific enzyme naringenin 7-O-methyltransferase (NOMT) for sakuranetin biosynthesis. The presence of naringenin, which serves as the biosynthetic precursor of sakuranetin made this modification feasible in theory. Liquid chromatography tandem mass spectrometry (LC-MS/MS) validated that the seeds of transgenic rice accumulated remarkable sakuranetin at the mature stage, and higher at the filling stage. In addition, the panicle blast resistance of transgenic rice was significantly higher than that of the wild type. Specially, the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging was performed to detect the content and spatial distribution of sakuranetin and other nutritional metabolites in transgenic rice seeds. Notably, this genetic modification also did not change the nutritional and quality indicators such as soluble sugars, total amino acids, total flavonoids, amylose, total protein, and free amino acid content in rice. Meanwhile, the phenotypes of the transgenic plant during the whole growth and developmental periods and agricultural traits such as grain width, grain length, and 1000-grain weight exhibited no significant differences from the wild type. Collectively, the study provides a conceptual advance on cultivating sakuranetin-rich biofortified rice by metabolic engineering. This new breeding idea may not only enhance the disease resistance of cereal crop seeds but also improve the nutritional value of grains for human health benefits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA