Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 10: 1153986, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781114

RESUMEN

Although numerous epidemiological studies investigated the association between dietary fat intakes or serum lipid levels and ovarian cancer risk, a consistent and explicit conclusion for specific dietary fats or serum lipids that increase the risk of ovarian cancer is not available. In this study, a systematic review and meta-analysis were conducted to assess the key dietary fats and serum lipids that increased the risk of ovarian cancer. Databases such as PubMed, Web of Science, and EMBASE were searched for observational studies. A total of 41 studies met the inclusion criteria, including 18 cohort and 23 case-control studies (109,507 patients with ovarian cancer and 2,558,182 control/non-ovarian cancer participants). Higher dietary intakes of total fat (RR = 1.19, 95% CI = 1.06-1.33, I2 = 60.3%), cholesterol (RR = 1.14, 95% CI = 1.03-1.26, I2 = 19.4%), saturated fat (RR = 1.13, 95% CI = 1.04-1.22, I2 = 13.4%), and animal fat (RR = 1.21, 95% CI = 1.01-1.43, I2 = 70.5%) were significantly associated with a higher risk of ovarian cancer. A higher level of serum triglycerides was accompanied by a higher risk of ovarian cancer (RR = 1.33, 95% CI = 1.02-1.72, I2 = 89.3%). This meta-analysis indicated that a higher daily intake of total fat, saturated fat, animal fat, and cholesterol and higher levels of serum triglycerides were significantly associated with an increased risk of ovarian cancer.

2.
J Physiol Biochem ; 78(1): 257-269, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34851490

RESUMEN

Hypertension or angiotensin II (Ang II) induces cardiac inflammation and fibrosis, thus contributing to cardiac remodeling. MicroRNAs (miRNAs) are considered crucial regulators of cardiac homeostasis and remodeling in response to various types of stress. It has been reported that miR-451a is involved in regulating ischemic heart injury. However, its role in Ang II-induced cardiac fibrosis remains unknown. Cardiac remodeling was induced in mice by infusion of low-dose Ang II (490 ng/kg/min) with a minipump for 2 weeks. Echocardiography and histological examinations were performed to evaluate cardiac function and pathological changes. We observed that miR-451a expression was the most significantly downregulated in the hearts of Ang II-infused mice and in both primary cardiac myocytes and fibroblasts. Overexpression of miR-451a in mice significantly attenuated Ang II-induced cardiac fibrosis and inflammation. Conversely, knockdown of miR-451a in mice aggravated this effect. Bioinformatics analysis and a luciferase reporter assay revealed that TBX1 was a direct target of miR-451a. Mechanistically, miR-451a directly targeted TBX1 expression, which inhibited TGF-ß1 production in both cardiac myocytes and fibroblasts, inactivating of TGF-ß1/SMAD2/3 signaling, inhibiting myofibroblast differentiation and proinflammatory cytokine expression, and leading to attenuation of cardiac fibrosis and inflammation. In conclusion, these results indicate that miR-451a acts as a novel regulator of Ang II-induced cardiac fibrosis and inflammation by directly targeting TBX1, and may be a promising therapeutic target for treating hypertensive cardiac diseases.


Asunto(s)
Angiotensina II , MicroARNs , Angiotensina II/metabolismo , Animales , Fibrosis , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA