RESUMEN
Development of invariant natural killer T (iNKT) cells requires the presentation of lipid ligand(s) by CD1d molecules in the thymus. The glycosphingolipid (GSL) isoglobotrihexosylceramide (iGb3) has been proposed as the natural iNKT cell-selecting ligand in the thymus and to be involved in peripheral activation of iNKT cells by dendritic cells (DCs). However, there is no direct biochemical evidence for the presence of iGb3 in mouse or human thymus or DCs. Using a highly sensitive HPLC assay, the only tissue where iGb3 could be detected in mouse was the dorsal root ganglion (DRG). iGb3 was not detected in other mouse or any human tissues analyzed, including thymus and DCs. Even in mutant mice that store isoglobo-series GSLs in the DRG, we were still unable to detect these GSLs in the thymus. iGb3 is therefore unlikely to be a physiologically relevant iNKT cell-selecting ligand in mouse and humans. A detailed study is now warranted to better understand the nature of iNKT cell-selecting ligand(s) in vivo.
Asunto(s)
Globósidos/metabolismo , Células Asesinas Naturales/inmunología , Mamíferos/inmunología , Animales , Antígenos CD1/metabolismo , Cromatografía Líquida de Alta Presión , Células Dendríticas , Ganglios Espinales/metabolismo , Globósidos/inmunología , Humanos , Células Asesinas Naturales/citología , Ligandos , Mamíferos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , TimoRESUMEN
Substrate reduction therapy uses small molecules to slow the rate of glycolipid biosynthesis. One of these drugs, N-butyldeoxynojirimycin (NB-DNJ), shows efficacy in mouse models of Tay-Sachs, Sandhoff and Fabry diseases. This offers the prospect that NB-DNJ may be of therapeutic benefit, at least in the juvenile and adult onset variants of these disorders. The infantile onset variants will require an additional enzyme-augmenting modality if the pathology is to be significantly improved. A second drug, N-butyldeoxyglactonojirimycin, looks very promising for treating storage diseases with neurological involvement as high systemic dosing is achievable without any side-effects.