Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Carbohydr Polym ; 340: 122317, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38858030

RESUMEN

Brown macroalgae synthesize large amounts of fucoidans, sulfated fucose-containing polysaccharides, in the ocean. Fucoidans are of importance for their recently discovered contribution to marine carbon dioxide sequestration and due to their potential applications in biotechnology and biomedicine. However, fucoidans have high intra- and intermolecular diversity that challenges assignment of structure to biological function and the development of applications. Fucoidan-active enzymes may be used to simplify this diversity by producing defined oligosaccharides more applicable for structural refinement, characterization, and structure to function assignment for example via bioassays. In this study, we combined MALDI mass spectrometry with biocatalysis to show that the endo-fucoidanases P5AFcnA and Wv323 can produce defined oligosaccharide structures directly from unrefined macroalgal biomass. P5AFcnA released oligosaccharides from seven commercial fucoidan extracts in addition to unrefined biomass of three macroalgae species indicating a broadly applicable approach reproducible across 10 species. Both MALDI-TOF/TOF and AP-MALDI-Orbitrap systems were used, demonstrating that the approach is not instrument-specific and exploiting their combined high-throughput and high-resolution capabilities. Overall, the combination of MALDI-MS and endo-fucoidanase assays offers high-throughput evaluation of fucoidan samples and also enables extraction of defined oligosaccharides of known structure from unrefined seaweed biomass.


Asunto(s)
Glicósido Hidrolasas , Polisacáridos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Polisacáridos/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/química , Hidrólisis , Algas Marinas/química , Phaeophyceae/química , Phaeophyceae/enzimología , Oligosacáridos/química , Biomasa
2.
Sci Rep ; 14(1): 14019, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890484

RESUMEN

The mucus surface layer serves vital functions for scleractinian corals and consists mainly of carbohydrates. Its carbohydrate composition has been suggested to be influenced by environmental conditions (e.g., temperature, nutrients) and microbial pressures (e.g., microbial degradation, microbial coral symbionts), yet to what extend the coral mucus composition is determined by phylogeny remains to be tested. To investigate the variation of mucus carbohydrate compositions among coral species, we analyzed the composition of mucosal carbohydrate building blocks (i.e., monosaccharides) for five species of scleractinian corals, supplemented with previously reported data, to discern overall patterns using cluster analysis. Monosaccharide composition from a total of 23 species (belonging to 14 genera and 11 families) revealed significant differences between two phylogenetic clades that diverged early in the evolutionary history of scleractinian corals (i.e., complex and robust; p = 0.001, R2 = 0.20), mainly driven by the absence of arabinose in the robust clade. Despite considerable differences in environmental conditions and sample analysis protocols applied, coral phylogeny significantly correlated with monosaccharide composition (Mantel test: p < 0.001, R2 = 0.70). These results suggest that coral mucus carbohydrates display phylogenetic dependence and support their essential role in the functioning of corals.


Asunto(s)
Antozoos , Moco , Filogenia , Antozoos/genética , Antozoos/metabolismo , Antozoos/clasificación , Animales , Moco/química , Moco/metabolismo , Carbohidratos/análisis , Carbohidratos/química , Monosacáridos/análisis
3.
J Am Chem Soc ; 146(27): 18320-18330, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38916244

RESUMEN

Fucoidan, a sulfated polysaccharide found in algae, plays a central role in marine carbon sequestration and exhibits a wide array of bioactivities. However, the molecular diversity and structural complexity of fucoidan hinder precise structure-function studies. To address this, we present an automated method for generating well-defined linear and branched α-fucan oligosaccharides. Our syntheses include oligosaccharides with up to 20 cis-glycosidic linkages, diverse branching patterns, and 11 sulfate monoesters. In this study, we demonstrate the utility of these oligosaccharides by (i) characterizing two endo-acting fucoidan glycoside hydrolases (GH107), (ii) utilizing them as standards for NMR studies to confirm suggested structures of algal fucoidans, and (iii) developing a fucoidan microarray. This microarray enabled the screening of the molecular specificity of four monoclonal antibodies (mAb) targeting fucoidan. It was found that mAb BAM4 has cross-reactivity to ß-glucans, while mAb BAM2 has reactivity to fucoidans with 4-O-sulfate esters. Knowledge of the mAb BAM2 epitope specificity provided evidence that a globally abundant marine diatom, Thalassiosira weissflogii, synthesizes a fucoidan with structural homology to those found in brown algae. Automated glycan assembly provides access to fucoidan oligosaccharides. These oligosaccharides provide the basis for molecular level investigations into fucoidan's roles in medicine and carbon sequestration.


Asunto(s)
Oligosacáridos , Polisacáridos , Polisacáridos/química , Polisacáridos/síntesis química , Oligosacáridos/química , Oligosacáridos/síntesis química , Diatomeas/química , Diatomeas/metabolismo , Automatización , Anticuerpos Monoclonales/química , Phaeophyceae/química , Glicósido Hidrolasas/metabolismo
4.
Nat Commun ; 15(1): 4048, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744821

RESUMEN

Phytoplankton blooms provoke bacterioplankton blooms, from which bacterial biomass (necromass) is released via increased zooplankton grazing and viral lysis. While bacterial consumption of algal biomass during blooms is well-studied, little is known about the concurrent recycling of these substantial amounts of bacterial necromass. We demonstrate that bacterial biomass, such as bacterial alpha-glucan storage polysaccharides, generated from the consumption of algal organic matter, is reused and thus itself a major bacterial carbon source in vitro and during a diatom-dominated bloom. We highlight conserved enzymes and binding proteins of dominant bloom-responder clades that are presumably involved in the recycling of bacterial alpha-glucan by members of the bacterial community. We furthermore demonstrate that the corresponding protein machineries can be specifically induced by extracted alpha-glucan-rich bacterial polysaccharide extracts. This recycling of bacterial necromass likely constitutes a large-scale intra-population energy conservation mechanism that keeps substantial amounts of carbon in a dedicated part of the microbial loop.


Asunto(s)
Bacterias , Ciclo del Carbono , Glucanos , Glucanos/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Fitoplancton/metabolismo , Biomasa , Diatomeas/metabolismo , Eutrofización , Carbono/metabolismo , Zooplancton/metabolismo , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/química , Proteínas Bacterianas/metabolismo
5.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365244

RESUMEN

Members of microbial communities can substantially overlap in substrate use. However, what enables functionally redundant microorganisms to coassemble or even stably coexist remains poorly understood. Here, we show that during unstable successional dynamics on complex, natural organic matter, functionally redundant bacteria can coexist by partitioning low-concentration substrates even though they compete for one simple, dominant substrate. We allowed ocean microbial communities to self-assemble on leachates of the brown seaweed Fucus vesiculosus and then analyzed the competition among 10 taxonomically diverse isolates representing two distinct stages of the succession. All, but two isolates, exhibited an average of 90% ± 6% pairwise overlap in resource use, and functional redundancy of isolates from the same assembly stage was higher than that from between assembly stages, leading us to construct a simpler four-isolate community with two isolates from each of the early and late stages. We found that, although the short-term dynamics of the four-isolate communities in F. vesiculosus leachate was dependent on initial isolate ratios, in the long term, the four isolates stably coexist in F. vesiculosus leachate, albeit with some strains at low abundance. We therefore explored the potential for nonredundant substrate use by genomic content analysis and RNA expression patterns. This analysis revealed that the four isolates mainly differed in peripheral metabolic pathways, such as the ability to degrade pyrimidine, leucine, and tyrosine, as well as aromatic substrates. These results highlight the importance of fine-scale differences in metabolic strategies for supporting the frequently observed coexistence of large numbers of rare organisms in natural microbiomes.


Asunto(s)
Microbiota , Algas Marinas , Bacterias/genética
6.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365229

RESUMEN

Coastal shelf sediments are hot spots of organic matter mineralization. They receive up to 50% of primary production, which, in higher latitudes, is strongly seasonal. Polar and temperate benthic bacterial communities, however, show a stable composition based on comparative 16S rRNA gene sequencing despite different microbial activity levels. Here, we aimed to resolve this contradiction by identifying seasonal changes at the functional level, in particular with respect to algal polysaccharide degradation genes, by combining metagenomics, metatranscriptomics, and glycan analysis in sandy surface sediments from Isfjorden, Svalbard. Gene expressions of diverse carbohydrate-active enzymes changed between winter and spring. For example, ß-1,3-glucosidases (e.g. GH30, GH17, GH16) degrading laminarin, an energy storage molecule of algae, were elevated in spring, while enzymes related to α-glucan degradation were expressed in both seasons with maxima in winter (e.g. GH63, GH13_18, and GH15). Also, the expression of GH23 involved in peptidoglycan degradation was prevalent, which is in line with recycling of bacterial biomass. Sugar extractions from bulk sediments were low in concentrations during winter but higher in spring samples, with glucose constituting the largest fraction of measured monosaccharides (84% ± 14%). In porewater, glycan concentrations were ~18-fold higher than in overlying seawater (1107 ± 484 vs. 62 ± 101 µg C l-1) and were depleted in glucose. Our data indicate that microbial communities in sandy sediments digest and transform labile parts of photosynthesis-derived particulate organic matter and likely release more stable, glucose-depleted residual glycans of unknown structures, quantities, and residence times into the ocean, thus modulating the glycan composition of marine coastal waters.


Asunto(s)
Microbiota , Agua de Mar , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Bacterias/genética , Glucosa , Sedimentos Geológicos/microbiología
7.
ISME Commun ; 3(1): 130, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071398

RESUMEN

Carbohydrates are chemically and structurally diverse, represent a substantial fraction of marine organic matter and are key substrates for heterotrophic microbes. Studies on carbohydrate utilisation by marine microbes have been centred on phytoplankton blooms in temperate regions, while far less is known from high-latitude waters and during later seasonal stages. Here, we combine glycan microarrays and analytical chromatography with metagenomics and metatranscriptomics to show the spatial heterogeneity in glycan distribution and potential carbohydrate utilisation by microbes in Atlantic waters of the Arctic. The composition and abundance of monomers and glycan structures in POM varied with location and depth. Complex fucose-containing sulfated polysaccharides, known to accumulate in the ocean, were consistently detected, while the more labile ß-1,3-glucan exhibited a patchy distribution. Through 'omics analysis, we identify variations in the abundance and transcription of carbohydrate degradation-related genes across samples at the community and population level. The populations contributing the most to transcription were taxonomically related to those known as primary responders and key carbohydrate degraders in temperate ecosystems, such as NS4 Marine Group and Formosa. The unique transcription profiles for these populations suggest distinct substrate utilisation potentials, with predicted glycan targets corresponding to those structurally identified in POM from the same sampling sites. By combining cutting-edge technologies and protocols, we provide insights into the carbohydrate component of the carbon cycle in the Arctic during late summer and present a high-quality dataset that will be of great value for future comparative analyses.

8.
Nat Commun ; 14(1): 8080, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057294

RESUMEN

The ability of marine bacteria to direct their movement in response to chemical gradients influences inter-species interactions, nutrient turnover, and ecosystem productivity. While many bacteria are chemotactic towards small metabolites, marine organic matter is predominantly composed of large molecules and polymers. Yet, the signalling role of these large molecules is largely unknown. Using in situ and laboratory-based chemotaxis assays, we show that marine bacteria are strongly attracted to the abundant algal polysaccharides laminarin and alginate. Unexpectedly, these polysaccharides elicited stronger chemoattraction than their oligo- and monosaccharide constituents. Furthermore, chemotaxis towards laminarin was strongly enhanced by dimethylsulfoniopropionate (DMSP), another ubiquitous algal-derived metabolite. Our results indicate that DMSP acts as a methyl donor for marine bacteria, increasing their gradient detection capacity and facilitating their access to polysaccharide patches. We demonstrate that marine bacteria are capable of strong chemotaxis towards large soluble polysaccharides and uncover a new ecological role for DMSP in enhancing this attraction. These navigation behaviours may contribute to the rapid turnover of polymers in the ocean, with important consequences for marine carbon cycling.


Asunto(s)
Quimiotaxis , Compuestos de Sulfonio , Quimiotaxis/fisiología , Ecosistema , Compuestos de Azufre/metabolismo , Compuestos de Sulfonio/metabolismo , Bacterias/metabolismo , Polisacáridos/metabolismo , Polímeros/metabolismo
9.
Environ Microbiol ; 25(9): 1713-1727, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37121608

RESUMEN

Marine Bacteroidetes that degrade polysaccharides contribute to carbon cycling in the ocean. Organic matter, including glycans from terrestrial plants, might enter the oceans through rivers. Whether marine bacteria degrade structurally related glycans from diverse sources including terrestrial plants and marine algae was previously unknown. We show that the marine bacterium Flavimarina sp. Hel_I_48 encodes two polysaccharide utilization loci (PULs) which degrade xylans from terrestrial plants and marine algae. Biochemical experiments revealed activity and specificity of the encoded xylanases and associated enzymes of these PULs. Proteomics indicated that these genomic regions respond to glucuronoxylans and arabinoxylans. Substrate specificities of key enzymes suggest dedicated metabolic pathways for xylan utilization. Some of the xylanases were active on different xylans with the conserved ß-1,4-linked xylose main chain. Enzyme activity was consistent with growth curves showing Flavimarina sp. Hel_I_48 uses structurally different xylans. The observed abundance of related xylan-degrading enzyme repertoires in genomes of other marine Bacteroidetes indicates similar activities are common in the ocean. The here presented data show that certain marine bacteria are genetically and biochemically variable enough to access parts of structurally diverse xylans from terrestrial plants as well as from marine algal sources.


Asunto(s)
Flavobacteriaceae , Xilanos , Xilanos/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Polisacáridos/metabolismo , Flavobacteriaceae/genética , Genómica
10.
Microbiome ; 11(1): 77, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069671

RESUMEN

BACKGROUND: Blooms of marine microalgae play a pivotal role in global carbon cycling. Such blooms entail successive blooms of specialized clades of planktonic bacteria that collectively remineralize gigatons of algal biomass on a global scale. This biomass is largely composed of distinct polysaccharides, and the microbial decomposition of these polysaccharides is therefore a process of prime importance. RESULTS: In 2020, we sampled a complete biphasic spring bloom in the German Bight over a 90-day period. Bacterioplankton metagenomes from 30 time points allowed reconstruction of 251 metagenome-assembled genomes (MAGs). Corresponding metatranscriptomes highlighted 50 particularly active MAGs of the most abundant clades, including many polysaccharide degraders. Saccharide measurements together with bacterial polysaccharide utilization loci (PUL) expression data identified ß-glucans (diatom laminarin) and α-glucans as the most prominent and actively metabolized dissolved polysaccharide substrates. Both substrates were consumed throughout the bloom, with α-glucan PUL expression peaking at the beginning of the second bloom phase shortly after a peak in flagellate and the nadir in bacterial total cell counts. CONCLUSIONS: We show that the amounts and composition of dissolved polysaccharides, in particular abundant storage polysaccharides, have a pronounced influence on the composition of abundant bacterioplankton members during phytoplankton blooms, some of which compete for similar polysaccharide niches. We hypothesize that besides the release of algal glycans, also recycling of bacterial glycans as a result of increased bacterial cell mortality can have a significant influence on bacterioplankton composition during phytoplankton blooms. Video Abstract.


Asunto(s)
Eutrofización , Fitoplancton , Fitoplancton/genética , Fitoplancton/metabolismo , Mar del Norte , Plancton/genética , Polisacáridos/metabolismo , Bacterias/genética , Bacterias/metabolismo
11.
Nat Commun ; 14(1): 510, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36720878

RESUMEN

Algal blooms are hotspots of marine primary production and play central roles in microbial ecology and global elemental cycling. Upon demise of the bloom, organic carbon is partly respired and partly transferred to either higher trophic levels, bacterial biomass production or sinking. Viral infection can lead to bloom termination, but its impact on the fate of carbon remains largely unquantified. Here, we characterize the interplay between viral infection and the composition of a bloom-associated microbiome and consequently the evolving biogeochemical landscape, by conducting a large-scale mesocosm experiment where we monitor seven induced coccolithophore blooms. The blooms show different degrees of viral infection and reveal that only high levels of viral infection are followed by significant shifts in the composition of free-living bacterial and eukaryotic assemblages. Intriguingly, upon viral infection the biomass of eukaryotic heterotrophs (thraustochytrids) rivals that of bacteria as potential recyclers of organic matter. By combining modeling and quantification of active viral infection at a single-cell resolution, we estimate that viral infection causes a 2-4 fold increase in per-cell rates of extracellular carbon release in the form of acidic polysaccharides and particulate inorganic carbon, two major contributors to carbon sinking into the deep ocean. These results reveal the impact of viral infection on the fate of carbon through microbial recyclers of organic matter in large-scale coccolithophore blooms.


Asunto(s)
Eucariontes , Virosis , Humanos , Células Eucariotas , Bacterias , Carbono
12.
Proc Natl Acad Sci U S A ; 120(1): e2210561119, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36584294

RESUMEN

Brown algae annually convert gigatons of carbon dioxide into carbohydrates, including the complex extracellular matrix polysaccharide fucoidan. Due to its persistence in the environment, fucoidan is potentially a pathway for marine carbon sequestration. Rates of fucoidan secretion by brown algae remain unknown due to the challenge of identifying and quantifying complex polysaccharides in seawater. We adapted the techniques of anion exchange chromatography, enzyme-linked immunosorbent assay, and biocatalytic enzyme-based assay for detection and quantification of fucoidan. We found the brown alga Fucus vesiculosus at the Baltic Sea coast of south-west Finland to secrete 0.3% of their biomass as fucoidan per day. Dissolved fucoidan concentrations in seawater adjacent to algae reached up to 0.48 mg L-1. Fucoidan accumulated during incubations of F. vesiculosus, significantly more in light than in darkness. Maximum estimation by acid hydrolysis indicated fucoidan secretion at a rate of 28 to 40 mg C kg-1 h-1, accounting for 44 to 50% of all exuded dissolved organic carbon. Composed only of carbon, oxygen, hydrogen, and sulfur, fucoidan secretion does not consume nutrients enabling carbon sequestration independent of algal growth. Extrapolated over a year, the algae sequester more carbon into secreted fucoidan than their biomass. The global utility of fucoidan secretion is an alternative pathway for carbon dioxide removal by brown algae without the need to harvest or bury algal biomass.


Asunto(s)
Dióxido de Carbono , Phaeophyceae , Dióxido de Carbono/metabolismo , Polisacáridos/metabolismo , Phaeophyceae/metabolismo , Océanos y Mares
13.
ISME J ; 17(2): 276-285, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36411326

RESUMEN

The polysaccharide ß-mannan, which is common in terrestrial plants but unknown in microalgae, was recently detected during diatom blooms. We identified a ß-mannan polysaccharide utilization locus (PUL) in the genome of the marine flavobacterium Muricauda sp. MAR_2010_75. Proteomics showed ß-mannan induced translation of 22 proteins encoded within the PUL. Biochemical and structural analyses deduced the enzymatic cascade for ß-mannan utilization. A conserved GH26 ß-mannanase with endo-activity depolymerized the ß-mannan. Consistent with the biochemistry, X-ray crystallography showed the typical TIM-barrel fold of related enzymes found in terrestrial ß-mannan degraders. Structural and biochemical analyses of a second GH26 allowed the prediction of an exo-activity on shorter manno-gluco oligosaccharides. Further analysis demonstrated exo-α-1,6-galactosidase- and endo-ß-1,4-glucanase activity of the PUL-encoded GH27 and GH5_26, respectively, indicating the target substrate is a galactoglucomannan. Epitope deletion assays with mannanases as analytic tools indicate the presence of ß-mannan in the diatoms Coscinodiscus wailesii and Chaetoceros affinis. Mannanases from the PUL were active on diatom ß-mannan and polysaccharide extracts sampled during a microalgal bloom at the North Sea. Together these results demonstrate that marine microorganisms use a conserved enzymatic cascade to degrade ß-mannans of marine and terrestrial origin and that this metabolic pathway plays a role in marine carbon cycling.


Asunto(s)
Diatomeas , Mananos , Mananos/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Bacteroidetes/genética , beta-Manosidasa/genética , beta-Manosidasa/química , beta-Manosidasa/metabolismo , Polisacáridos/metabolismo , Oligosacáridos/metabolismo
14.
Microb Cell Fact ; 21(1): 207, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36217189

RESUMEN

BACKGROUND: Marine algae are responsible for half of the global primary production, converting carbon dioxide into organic compounds like carbohydrates. Particularly in eutrophic waters, they can grow into massive algal blooms. This polysaccharide rich biomass represents a cheap and abundant renewable carbon source. In nature, the diverse group of polysaccharides is decomposed by highly specialized microbial catabolic systems. We elucidated the complete degradation pathway of the green algae-specific polysaccharide ulvan in previous studies using a toolbox of enzymes discovered in the marine flavobacterium Formosa agariphila and recombinantly expressed in Escherichia coli. RESULTS: In this study we show that ulvan from algal biomass can be used as feedstock for a biotechnological production strain using recombinantly expressed carbohydrate-active enzymes. We demonstrate that Bacillus licheniformis is able to grow on ulvan-derived xylose-containing oligosaccharides. Comparative growth experiments with different ulvan hydrolysates and physiological proteogenomic analyses indicated that analogues of the F. agariphila ulvan lyase and an unsaturated ß-glucuronylhydrolase are missing in B. licheniformis. We reveal that the heterologous expression of these two marine enzymes in B. licheniformis enables an efficient conversion of the algal polysaccharide ulvan as carbon and energy source. CONCLUSION: Our data demonstrate the physiological capability of the industrially relevant bacterium B. licheniformis to grow on ulvan. We present a metabolic engineering strategy to enable ulvan-based biorefinery processes using this bacterial cell factory. With this study, we provide a stepping stone for the development of future bioprocesses with Bacillus using the abundant marine renewable carbon source ulvan.


Asunto(s)
Bacillus licheniformis , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Dióxido de Carbono , Ingeniería Metabólica , Oligosacáridos , Polisacáridos/metabolismo , Xilosa
15.
Curr Opin Chem Biol ; 71: 102204, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36155346

RESUMEN

Algae synthesise structurally complex glycans to build a protective barrier, the extracellular matrix. One function of matrix glycans is to slow down microorganisms that try to enzymatically enter living algae and degrade and convert their organic carbon back to carbon dioxide. We propose that matrix glycans lock up carbon in the ocean by controlling degradation of organic carbon by bacteria and other microbes not only while algae are alive, but also after death. Data revised in this review shows accumulation of algal glycans in the ocean underscoring the challenge bacteria and other microbes face to breach the glycan barrier with carbohydrate active enzymes. Briefly we also update on methods required to certify the uncertain magnitude and unknown molecular causes of glycan-controlled carbon sequestration in a changing ocean.


Asunto(s)
Secuestro de Carbono , Polisacáridos , Polisacáridos/química , Océanos y Mares
16.
Microbiologyopen ; 11(3): e1289, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35765187

RESUMEN

Marine algae drive the marine carbon cycle, converting carbon dioxide into organic material. A major component of this produced biomass is a variety of glycans. Marine α-glucans include a range of storage glycans from red and green algae, bacteria, fungi, and animals. Although these compounds are likely to account for a high amount of the carbon stored in the oceans they have not been quantified in marine samples so far. Here we present a method to extract and quantify α-glucans (and compare it with the ß-glucan laminarin) in particulate organic matter from algal cultures and environmental samples using sequential physicochemical extraction and enzymes as α-glucan-specific probes. This enzymatic assay is more specific and less susceptible to side reactions than chemical hydrolysis. Using HPAEC-PAD to detect the hydrolysis products allows for a glycan quantification in particulate marine samples down to a concentration of ≈2 µg/L. We measured glucans in three cultured microalgae as well as in marine particulate organic matter from the North Sea and western North Atlantic Ocean. While the ß-glucan laminarin from diatoms and brown algae is an essential component of marine carbon turnover, our results further indicate the significant contribution of starch-like α-glucans to marine particulate organic matter. Henceforth, the combination of glycan-linkage-specific enzymes and chromatographic hydrolysis product detection can provide a powerful tool in the exploration of marine glycans and their role in the global carbon cycle.


Asunto(s)
Material Particulado , beta-Glucanos , Animales , Glucanos , Océanos y Mares , Polisacáridos
17.
ISME J ; 16(7): 1818-1830, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35414716

RESUMEN

Microbial glycan degradation is essential to global carbon cycling. The marine bacterium Salegentibacter sp. Hel_I_6 (Bacteroidota) isolated from seawater off Helgoland island (North Sea) contains an α-mannan inducible gene cluster with a GH76 family endo-α-1,6-mannanase (ShGH76). This cluster is related to genetic loci employed by human gut bacteria to digest fungal α-mannan. Metagenomes from the Hel_I_6 isolation site revealed increasing GH76 gene frequencies in free-living bacteria during microalgae blooms, suggesting degradation of α-1,6-mannans from fungi. Recombinant ShGH76 protein activity assays with yeast α-mannan and synthetic oligomannans showed endo-α-1,6-mannanase activity. Resolved structures of apo-ShGH76 (2.0 Å) and of mutants co-crystalized with fungal mannan-mimicking α-1,6-mannotetrose (1.90 Å) and α-1,6-mannotriose (1.47 Å) retained the canonical (α/α)6 fold, despite low identities with sequences of known GH76 structures (GH76s from gut bacteria: <27%). The apo-form active site differed from those known from gut bacteria, and co-crystallizations revealed a kinked oligomannan conformation. Co-crystallizations also revealed precise molecular-scale interactions of ShGH76 with fungal mannan-mimicking oligomannans, indicating adaptation to this particular type of substrate. Our data hence suggest presence of yet unknown fungal α-1,6-mannans in marine ecosystems, in particular during microalgal blooms.


Asunto(s)
Glicósido Hidrolasas , Mananos , Bacteroidetes/metabolismo , Ecosistema , Hongos/metabolismo , Glicósido Hidrolasas/genética , Humanos , Mananos/metabolismo
18.
Cell Host Microbe ; 30(3): 314-328.e11, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35240043

RESUMEN

Humans harbor numerous species of colonic bacteria that digest fiber polysaccharides in commonly consumed terrestrial plants. More recently in history, regional populations have consumed edible macroalgae seaweeds containing unique polysaccharides. It remains unclear how extensively gut bacteria have adapted to digest these nutrients. Here, we show that the ability of gut bacteria to digest seaweed polysaccharides is more pervasive than previously appreciated. Enrichment-cultured Bacteroides harbor previously discovered genes for seaweed degradation, which have mobilized into several members of this genus. Additionally, other examples of marine bacteria-derived genes, and their mobile DNA elements, are involved in gut microbial degradation of seaweed polysaccharides, including genes in gut-resident Firmicutes. Collectively, these results uncover multiple separate events that have mobilized the genes encoding seaweed-degrading-enzymes into gut bacteria. This work further underscores the metabolic plasticity of the human gut microbiome and global exchange of genes in the context of dietary selective pressures.


Asunto(s)
Microbioma Gastrointestinal , Algas Marinas , Bacterias/genética , Bacterias/metabolismo , Bacteroides/metabolismo , Digestión , Microbioma Gastrointestinal/genética , Humanos , Polisacáridos/metabolismo , Algas Marinas/metabolismo
19.
ISME J ; 16(3): 630-641, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34493810

RESUMEN

Marine algae annually sequester petagrams of carbon dioxide into polysaccharides, which are a central metabolic fuel for marine carbon cycling. Diatom microalgae produce sulfated polysaccharides containing methyl pentoses that are challenging to degrade for bacteria compared to other monomers, implicating these sugars as a potential carbon sink. Free-living bacteria occurring in phytoplankton blooms that specialise on consuming microalgal sugars, containing fucose and rhamnose remain unknown. Here, genomic and proteomic data indicate that small, coccoid, free-living Verrucomicrobiota specialise in fucose and rhamnose consumption during spring algal blooms in the North Sea. Verrucomicrobiota cell abundance was coupled with the algae bloom onset and accounted for up to 8% of the bacterioplankton. Glycoside hydrolases, sulfatases, and bacterial microcompartments, critical proteins for the consumption of fucosylated and sulfated polysaccharides, were actively expressed during consecutive spring bloom events. These specialised pathways were assigned to novel and discrete candidate species of the Akkermansiaceae and Puniceicoccaceae families, which we here describe as Candidatus Mariakkermansia forsetii and Candidatus Fucivorax forsetii. Moreover, our results suggest specialised metabolic pathways could determine the fate of complex polysaccharides consumed during algae blooms. Thus the sequestration of phytoplankton organic matter via methyl pentose sugars likely depend on the activity of specialised Verrucomicrobiota populations.


Asunto(s)
Diatomeas , Diatomeas/metabolismo , Eutrofización , Pentosas/metabolismo , Fitoplancton/metabolismo , Proteómica , Agua de Mar/microbiología , Sulfatos/metabolismo , Verrucomicrobia
20.
J Biol Chem ; 297(4): 101210, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34547290

RESUMEN

Marine algae catalyze half of all global photosynthetic production of carbohydrates. Owing to their fast growth rates, Ulva spp. rapidly produce substantial amounts of carbohydrate-rich biomass and represent an emerging renewable energy and carbon resource. Their major cell wall polysaccharide is the anionic carbohydrate ulvan. Here, we describe a new enzymatic degradation pathway of the marine bacterium Formosa agariphila for ulvan oligosaccharides involving unsaturated uronic acid at the nonreducing end linked to rhamnose-3-sulfate and glucuronic or iduronic acid (Δ-Rha3S-GlcA/IdoA-Rha3S). Notably, we discovered a new dehydratase (P29_PDnc) acting on the nonreducing end of ulvan oligosaccharides, i.e., GlcA/IdoA-Rha3S, forming the aforementioned unsaturated uronic acid residue. This residue represents the substrate for GH105 glycoside hydrolases, which complements the enzymatic degradation pathway including one ulvan lyase, one multimodular sulfatase, three glycoside hydrolases, and the dehydratase P29_PDnc, the latter being described for the first time. Our research thus shows that the oligosaccharide dehydratase is involved in the degradation of carboxylated polysaccharides into monosaccharides.


Asunto(s)
Organismos Acuáticos/enzimología , Proteínas Bacterianas/química , Deshidrogenasas de Carbohidratos/química , Flavobacteriaceae/enzimología , Polisacáridos/química , Proteínas Bacterianas/metabolismo , Deshidrogenasas de Carbohidratos/metabolismo , Polisacáridos/metabolismo , Ácidos Urónicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA