Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39201756

RESUMEN

Thiosemicarbazones and their metal complexes have been studied for their biological activities against bacteria, cancer cells and protozoa. Short-term in vitro treatment with one gold (III) complex (C3) and its salicyl-thiosemicarbazone ligand (C4) selectively inhibited proliferation of T. gondii. Transmission Electron Microscopy (TEM) detected transient structural alterations in the parasitophorous vacuole membrane and the tachyzoite cytoplasm, but the mitochondrial membrane potential appeared unaffected by these compounds. Proteins potentially interacting with C3 and C4 were identified using differential affinity chromatography coupled with mass spectrometry (DAC-MS). Moreover, long-term in vitro treatment was performed to investigate parasitostatic or parasiticidal activity of the compounds. DAC-MS identified 50 ribosomal proteins binding both compounds, and continuous drug treatments for up to 6 days caused the loss of efficacy. Parasite tolerance to both compounds was, however, rapidly lost in their absence and regained shortly after re-exposure. Proteome analyses of six T. gondii ME49 clones adapted to C3 and C4 compared to the non-adapted wildtype revealed overexpression of ribosomal proteins, of two transmembrane proteins involved in exocytosis and of an alpha/beta hydrolase fold domain-containing protein. Results suggest that C3 and C4 may interfere with protein biosynthesis and that adaptation may be associated with the upregulated expression of tachyzoite transmembrane proteins and transporters, suggesting that the in vitro drug tolerance in T. gondii might be due to reversible, non-drug specific stress-responses mediated by phenotypic plasticity.


Asunto(s)
Proteínas Ribosómicas , Tiosemicarbazonas , Toxoplasma , Toxoplasma/efectos de los fármacos , Toxoplasma/metabolismo , Tiosemicarbazonas/farmacología , Proteínas Ribosómicas/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Adaptación Fisiológica/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Regulación hacia Arriba/efectos de los fármacos , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Animales
2.
Insects ; 15(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39057279

RESUMEN

Aedes aegypti, the primary vector of dengue, undergoes preimaginal development in brackish water (BW). However, dengue vector control exclusively targets freshwater (FW) habitats. The present study evaluated the predatory efficacy of nymphal odonates that can develop in both FW and BW. Nymphs of three damselfly and three dragonfly species from FW and BW habitats were identified and acclimatized to FW (<0.5 gL-1 salt) and BW (10 gL-1 salt) mesocosm conditions. The experiment was repeated nine times with nine different individual predators per species under both salinity conditions. One hundred L3 Ae. aegypti from FW and BW laboratory colonies were introduced to determine the predatory rate (PR) and clearance rate (CR) after 24, 48, and 72 h, and one hundred L3 larvae were introduced every 24 h. The dragonfly nymph Hydrobasileus croceus and the damselfly nymph Paracercion hieroglyphicum showed the highest PR and CR under both rearing conditions at all times. However, damselfly and dragonfly nymphs significantly (p < 0.05) differed in their CR under both FW and BW conditions. Thus, all six odonate species have predatory potential and this suggests that they could be used as biological control agents to eliminate preimaginal stages of Ae. aegypti developing in both FW and BW habitats.

3.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39000012

RESUMEN

Identification of drug targets and biochemical investigations on mechanisms of action are major issues in modern drug development. The present article is a critical review of the classical "one drug"-"one target" paradigm. In fact, novel methods for target deconvolution and for investigation of resistant strains based on protein mass spectrometry have shown that multiple gene products and adaptation mechanisms are involved in the responses of pathogens to xenobiotics rather than one single gene or gene product. Resistance to drugs may be linked to differential expression of other proteins than those interacting with the drug in protein binding studies and result in complex cell physiological adaptation. Consequently, the unraveling of mechanisms of action needs approaches beyond proteomics. This review is focused on protozoan pathogens. The conclusions can, however, be extended to chemotherapies against other pathogens or cancer.


Asunto(s)
Antiprotozoarios , Proteómica , Proteómica/métodos , Humanos , Antiprotozoarios/farmacología , Animales , Proteínas Protozoarias/metabolismo , Resistencia a Medicamentos
4.
Front Cell Infect Microbiol ; 14: 1419209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975328

RESUMEN

As for many other organisms, CRISPR-Cas9 mediated genetic modification has gained increasing importance for the identification of vaccine candidates and drug targets in Neospora caninum, an apicomplexan parasite causing abortion in cattle and neuromuscular disease in dogs. A widely used approach for generating knock-out (KO) strains devoid of virulence factors is the integration of a drug selectable marker such as mutated dihydrofolate reductase-thymidylate synthase (mdhfr-ts) into the target gene, thus preventing the synthesis of respective protein and mediating resistance to pyrimethamine. However, CRISPR-Cas9 mutagenesis is not free of off-target effects, which can lead to integration of multiple mdhfr-ts copies into other sites of the genome. To determine the number of integrated mdhfr-ts in N. caninum, a duplex quantitative TaqMan PCR was developed. For this purpose, primers were designed that amplifies a 106 bp fragment from wild-type (WT) parasites corresponding to the single copy wtdhfrs-ts gene, as well as the mutated mdhfrs-ts present in KO parasites that confers resistance and were used simultaneously with primers amplifying the diagnostic NC5 gene. Thus, the dhfr-ts to NC5 ratio should be approximately 1 in WT parasites, while in KO parasites with a single integrated mdhrf-ts gene this ratio is doubled, and in case of multiple integration events even higher. This approach was applied to the Neospora KO strains NcΔGRA7 and NcΔROP40. For NcΔGRA7, the number of tachyzoites determined by dhfr-ts quantification was twice the number of tachyzoites determined by NC5 quantification, thus indicating that only one mdhfr-ts copy was integrated. The results obtained with the NcΔROP40 strain, however, showed that the number of dhfr-ts copies per genome was substantially higher, indicating that at least three copies of the selectable mdhfr-ts marker were integrated into the genomic DNA during gene editing by CRISPR-Cas9. This duplex TaqMan-qPCR provides a reliable and easy-to-use tool for assessing CRISPR-Cas9 mediated mutagenesis in WT N. caninum strains.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Neospora , Tetrahidrofolato Deshidrogenasa , Timidilato Sintasa , Tetrahidrofolato Deshidrogenasa/genética , Neospora/genética , Timidilato Sintasa/genética , Animales , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Resistencia a Medicamentos/genética , Edición Génica/métodos , Coccidiosis/parasitología , Complejos Multienzimáticos
5.
Int J Parasitol Drugs Drug Resist ; 25: 100553, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917582

RESUMEN

Toxoplasma gondii and Neospora caninum are major worldwide morbidity-causing pathogens. Bumped kinase inhibitors (BKIs) are a compound class that has been optimized to target the apicomplexan calcium-dependent protein kinase 1 (CDPK1) - and several members of this class have proven to be safe and highly active in vitro and in vivo. BKI-1708 is based on a 5-aminopyrazole-4-carboxamide scaffold, and exhibited in vitro IC50 values of 120 nM for T. gondii and 480 nM for N. caninum ß-galactosidase expressing strains, and did not affect human foreskin fibroblast (HFF) viability at concentrations up to 25 µM. Electron microscopy established that exposure of tachyzoite-infected fibroblasts to 2.5 µM BKI-1708 in vitro induced the formation of multinucleated schizont-like complexes (MNCs), characterized by continued nuclear division and harboring newly formed intracellular zoites that lack the outer plasma membrane. These zoites were unable to finalize cytokinesis to form infective tachyzoites. BKI-1708 did not affect zebrafish (Danio rerio) embryo development during the first 96 h following egg hatching at concentrations up to 2 µM. Treatments of mice with BKI-1708 at 20 mg/kg/day during five consecutive days resulted in drug plasma levels ranging from 0.14 to 4.95 µM. In vivo efficacy of BKI-1708 was evaluated by oral application of 20 mg/kg/day from day 9-13 of pregnancy in mice experimentally infected with N. caninum (NcSpain-7) tachyzoites or T. gondii (TgShSp1) oocysts. This resulted in significantly decreased cerebral parasite loads and reduced vertical transmission in both models without drug-induced pregnancy interference.


Asunto(s)
Coccidiosis , Fibroblastos , Neospora , Pirazoles , Toxoplasma , Animales , Neospora/efectos de los fármacos , Toxoplasma/efectos de los fármacos , Ratones , Coccidiosis/tratamiento farmacológico , Coccidiosis/parasitología , Pirazoles/farmacología , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/parasitología , Humanos , Antiprotozoarios/farmacología , Concentración 50 Inhibidora , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/parasitología , Modelos Animales de Enfermedad , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas
6.
Adv Parasitol ; 124: 91-154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38754928

RESUMEN

Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.


Asunto(s)
Coccidiosis , Neospora , Vacunas Antiprotozoos , Animales , Coccidiosis/prevención & control , Coccidiosis/veterinaria , Coccidiosis/parasitología , Coccidiosis/tratamiento farmacológico , Coccidiosis/inmunología , Neospora/inmunología , Vacunas Antiprotozoos/inmunología , Bovinos , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/parasitología , Desarrollo de Vacunas
7.
Int J Parasitol Drugs Drug Resist ; 25: 100544, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38703737

RESUMEN

Organometallic compounds, including Ruthenium complexes, have been widely developed as anti-cancer chemotherapeutics, but have also attracted much interest as potential anti-parasitic drugs. Recently hybrid drugs composed of organometallic Ruthenium moieties that were complexed to different antimicrobial agents were synthesized. One of these compounds, a trithiolato-diRuthenium complex (RU) conjugated to sulfadoxine (SDX), inhibited proliferation of Toxoplasma gondii tachyzoites grown in human foreskin fibroblast (HFF) monolayers with an IC50 < 150 nM, while SDX and the non-modified RU complex applied either individually or as an equimolar mixture were much less potent. In addition, conjugation of SDX to RU lead to decreased HFF cytotoxicity. RU-SDX did not impair the in vitro proliferation of murine splenocytes at concentrations ranging from 0.1 to 0.5 µM but had an impact at 2 µM, and induced zebrafish embryotoxicity at 20 µM, but not at 2 or 0.2 µM. RU-SDX acted parasitostatic but not parasiticidal, and induced transient ultrastructural changes in the mitochondrial matrix of tachyzoites early during treatment. While other compounds that target the mitochondrion such as the uncouplers FCCP and CCCP and another trithiolato-Ruthenium complex conjugated to adenine affected the mitochondrial membrane potential, no such effect was detected for RU-SDX. Evaluation of the in vivo efficacy of RU-SDX in a murine T. gondii oocyst infection model comprised of non-pregnant outbred CD1 mice showed no effects on the cerebral parasite burden, but reduced parasite load in the eyes and in heart tissue.


Asunto(s)
Toxoplasma , Pez Cebra , Toxoplasma/efectos de los fármacos , Animales , Ratones , Humanos , Fibroblastos/efectos de los fármacos , Fibroblastos/parasitología , Rutenio/química , Rutenio/farmacología , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/parasitología , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Antiprotozoarios/química , Femenino , Concentración 50 Inhibidora
8.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473953

RESUMEN

Cryptosporidium parvum is an apicomplexan parasite causing persistent diarrhea in humans and animals. Issuing from target-based drug development, calcium-dependent protein kinase 1 inhibitors, collectively named bumped kinase inhibitors (BKIs), with excellent efficacies in vitro and in vivo have been generated. Some BKIs including BKI-1748 share a core structure with similarities to the first-generation antiprotozoal drug quinine, which is known to exert notorious side effects. Unlike quinine, BKI-1748 rapidly interfered with C. parvum proliferation in the human colon tumor (HCT) cell line HCT-8 cells and caused dramatic effects on the parasite ultrastructure. To identify putative BKI targets in C. parvum and in host cells, we performed differential affinity chromatography with cell-free extracts from non-infected and infected HCT-8 cells using BKI-1748 and quinine epoxy-activated sepharose columns followed by mass spectrometry. C. parvum proteins of interest were identified in eluates from columns coupled to BKI-1748, or in eluates from both BKI-1748 and quinine columns. However, no C. parvum proteins could be identified binding exclusively to BKI-1748. In contrast, 25 BKI-1748-specific binding proteins originating from HCT-8 cells were detected. Moreover, 29 C. parvum and 224 host cell proteins were identified in both BKI-1748 as well as in quinine eluates. In both C. parvum and host cells, the largest subset of binding proteins was involved in RNA binding and modification, with a focus on ribosomal proteins and proteins involved in RNA splicing. These findings extend previous results, showing that BKI-1748 interacts with putative targets involved in common, essential pathways such as translation and RNA processing.


Asunto(s)
Antineoplásicos , Antiprotozoarios , Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animales , Humanos , Quinina/farmacología , Antiprotozoarios/farmacología , Antineoplásicos/farmacología
9.
Food Waterborne Parasitol ; 34: e00220, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38313347

RESUMEN

Bovine eosinophilic myositis is an inflammatory myopathy characterized by multiple focal or diffuse grey to green patches leading to condemnation of affected carcasses. Although its etiology is still uncertain, there is evidence that Sarcocystis species may play a role in the development of eosinophilic myositis. The goal of the present study was to identify Sarcocystis spp. in intralesional and extralesional tissues of condemned cattle carcasses, in order to evaluate the possible role of different bovine Sarcocystis spp. in the etiology of bovine eosinophilic myositis. Muscle samples (n = 100) of 26 affected carcasses were collected in Northern Italy. One to five samples with lesions and two aliquots of tissue without lesions were collected from each carcass; lesions were grossly categorized in green focal lesions and green diffuse patches. Genomic DNA was extracted and analyzed by multiplex-PCR targeting different Sarcocystis spp. Unidentified species were characterized morphologically (light microscopy, histology), ultrastructurally (scanning and transmission electron microscopy) and on the molecular level (complete 18S rRNA gene and partial cox1 gene sequencing). A bovine eosinophilic myositis prevalence of 0.017% was visually assessed by routine carcass inspection between 2014 and 2019 in Italy (184/1,108,150 slaughtered cattle). Out of 26 carcasses, 25 revealed the presence of at least one Sarcocystis species (96.2%). The presence of Sarcocystis spp. DNA was significantly more frequent in intralesional than in extralesional samples. Considering the different species, Sarcocystis bovifelis and Sarcocystis hominis were significantly more frequent in intralesional (41.7% and 50%, respectively) than in extralesional samples (1.9% and 15.4%, respectively), while there was no significant difference between the presence of Sarcocystis cruzi and Sarcocystis hirsuta in intralesional (27.1% and 2.1%, respectively) and extralesional (30.8% and 1.9%, respectively) samples. The presence of an unnamed Sarcocystis sp. showing thick-walled (3.7-5.4 µm) cysts with densely packed, flattened, undulating and narrow protrusions, which showed an S-shape in side view, was recorded in the diaphragm of two carcasses. Genomic DNA from individual sarcocysts isolated from the diaphragm was successfully amplified and further sequenced. Sequence comparison revealed <94.6% and 83.4% identity at 18S rRNA and cox1 genes, respectively, with other named Sarcocystis spp., while the phylogenetic analysis clearly separated the unnamed Sarcocystis sp. from the other Sarcocystis spp. using cattle as intermediate hosts. The present study contributes to the understanding of the importance of different Sarcocystis spp. in the pathogenesis of bovine eosinophilic myositis. The results emphasize the association of Sarcocystis hominis and Sarcocystis bovifelis with bovine eosinophilic myositis and highlight the presence of a new Sarcocystis sp. using cattle as intermediate hosts. The name Sarcocystis sigmoideus sp. nov. is proposed for the newly described Sarcocystis species.

10.
Expert Opin Drug Discov ; 19(1): 97-109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37921660

RESUMEN

INTRODUCTION: Toxoplasmosis constitutes a challenge for public health, animal production and welfare. Since more than 60 years, only a limited panel of drugs has been in use for clinical applications. AREAS COVERED: Herein, the authors describe the methodology and the results of library screening approaches to identify inhibitors of Toxoplasma gondii and related strains. The authors then provide the reader with their expert perspectives for the future. EXPERT OPINION: Various library screening projects, in particular those using reporter strains, have led to the identification of numerous compounds with good efficacy and specificity in vitro. However, only few compounds are effective in suitable animal models such as rodents. Whereas no novel compound has cleared the hurdle to applications in humans, the few compounds with known indication and application profiles in human patients are of interest for further investigations. Taken together, drug repurposing as well as high-throughput screening of novel compound libraries may shorten the way to novel drugs against toxoplasmosis.


Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Humanos , Toxoplasmosis/tratamiento farmacológico , Ensayos Analíticos de Alto Rendimiento
11.
J Infect Dis ; 229(2): 558-566, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37889572

RESUMEN

Congenital toxoplasmosis in humans and in other mammalian species, such as small ruminants, is a well-known cause of abortion and fetal malformations. The calcium-dependent protein kinase 1 (CDPK1) inhibitor BKI-1748 has shown a promising safety profile for its use in humans and a good efficacy against Toxoplasma gondii infection in vitro and in mouse models. Ten doses of BKI-1748 given every other day orally in sheep at 15 mg/kg did not show systemic or pregnancy-related toxicity. In sheep experimentally infected at 90 days of pregnancy with 1000 TgShSp1 oocysts, the BKI-1748 treatment administered from 48 hours after infection led to complete protection against abortion and congenital infection. In addition, compared to infected/untreated sheep, treated sheep showed a drastically lower rectal temperature increase and none showed IgG seroconversion throughout the study. In conclusion, BKI-1748 treatment in pregnant sheep starting at 48 hours after infection was fully effective against congenital toxoplasmosis.


Asunto(s)
Aborto Espontáneo , Enfermedades Transmisibles , Toxoplasma , Toxoplasmosis Congénita , Toxoplasmosis , Embarazo , Humanos , Femenino , Ratones , Ovinos , Animales , Toxoplasmosis Congénita/tratamiento farmacológico , Toxoplasmosis Congénita/prevención & control , Mamíferos
12.
Trop Med Infect Dis ; 8(12)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38133449

RESUMEN

The metacestode stage of the fox tapeworm Echinococcus multilocularis causes the severe zoonotic disease alveolar echinococcosis. New treatment options are urgently needed. Disulfiram and dithiocarbamates were previously shown to exhibit activity against the trematode Schistosoma mansoni. As both parasites belong to the platyhelminths, here we investigated whether these compounds were also active against E. multilocularis metacestode vesicles in vitro. We used an in vitro drug-screening cascade for the identification of novel compounds against E. multilocularis metacestode vesicles with disulfiram and 51 dithiocarbamates. Five compounds showed activity against E. multilocularis metacestode vesicles after five days of drug incubation in a damage marker release assay. Structure-activity relationship analyses revealed that a S-2-hydroxy-5-nitro benzyl moiety was necessary for anti-echinococcal activity, as derivatives without this group had no effect on E. multilocularis metacestode vesicles. The five active compounds were further tested for potential cytotoxicity in mammalian cells. For two compounds with low toxicity (Schl-32.315 and Schl-33.652), IC50 values in metacestode vesicles and IC50 values in germinal layer cells were calculated. The compounds were not highly active on isolated GL cells with IC50 values of 27.0 ± 4.2 µM for Schl-32.315 and 24.7 ± 11.5 µM for Schl-33.652, respectively. Against metacestode vesicles, Schl-32.315 was not very active either with an IC50 value of 41.6 ± 3.2 µM, while Schl-33.652 showed a low IC50 of 4.3 ± 1 µM and should be further investigated in the future for its activity against alveolar echinococcosis.

13.
Exp Parasitol ; 255: 108655, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37981259

RESUMEN

In previous studies, the artemisinin derivatives artemisone, its pro-drug artemiside and the bumped-kinase inhibitor BKI-1748 were effective against T. gondii via different modes of action. This suggests that they may act synergistically resulting in improved efficacies in vitro and in vivo. To test this hypothesis, the compounds were applied alone and in combination to T. gondii infected human fibroblast host cells in order to determine their inhibition constants and effects on cellular ultrastructure. In addition, the efficacy of either single- or combined treatments were assessed in an acute TgShSp1-oocyst infection model based on CD1 outbred mice. Whereas the IC50 of the compounds in combination (42 nM) was close to the IC50 of BKI-1748 alone (46 nM) and half of the IC50 of artemisone alone (92 nM), the IC90 of the combination was half of the values found with the single compounds (138 nM vs. ca. 270 nM). Another indication for synergistic effects in vitro were distinct alterations of the cellular ultrastructure of tachyzoites observed in combination, but not with the single compounds. These promising results could not be reproduced in vivo. There was no decrease in number of T. gondii positive brains by either treatment. However, the levels of infection in these brains, i. e. the number of tachyzoites, was significantly decreased upon BKI-1748 treatment alone, and the combination with artemiside did not produce any further decrease. The treatment with artemiside alone had no significant effects. A vertical transmission model could not be established since artemiside strongly interfered with pregnancy and caused abortion. These results show that is difficult to extrapolate from promising in vitro results to the situation in vivo.


Asunto(s)
Antineoplásicos , Artemisininas , Toxoplasma , Toxoplasmosis , Embarazo , Femenino , Ratones , Humanos , Animales , Toxoplasmosis/tratamiento farmacológico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Transmisión Vertical de Enfermedad Infecciosa , Antineoplásicos/farmacología
14.
PLoS Negl Trop Dis ; 17(8): e0011343, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37540716

RESUMEN

Echinococcus multilocularis and E. granulosus s.l. are the causative agents of alveolar and cystic echinococcosis, respectively. Drug treatment options for these severe and neglected diseases are limited to benzimidazoles, which are not always efficacious, and adverse side effects are reported. Thus, novel and improved treatments are needed. In this study, the previously established platform for E. multilocularis in vitro drug assessment was adapted to E. granulosus s.s. In a first step, in vitro culture protocols for E. granulosus s.s. were established. This resulted in the generation of large amounts of E. granulosus s.s. metacestode vesicles as well as germinal layer (GL) cells. In vitro culture of these cells formed metacestode vesicles displaying structural characteristics of metacestode cysts generated in vivo. Next, drug susceptibilities of E. multilocularis and E. granulosus s.s. protoscoleces, metacestode vesicles and GL cells were comparatively assessed employing established assays including (i) metacestode vesicle damage marker release assay, (ii) metacestode vesicle viability assay, (iii) GL cell viability assay, and (iv) protoscolex motility assay. The standard drugs albendazole, buparvaquone, mefloquine, MMV665807, monepantel, niclosamide and nitazoxanide were included. MMV665807, niclosamide and nitazoxanide were active against the parasite in all four assays against both species. MMV665807 and monepantel were significantly more active against E. multilocularis metacestode vesicles, while albendazole and nitazoxanide were significantly more active against E. multilocularis GL cells. Albendazole displayed activity against E. multilocularis GL cells, but no effects were seen in albendazole-treated E. granulosus s.s. GL cells within five days. Treatment of protoscoleces with albendazole and monepantel had no impact on motility. Similar results were observed for both species with praziquantel and its enantiomers against protoscoleces. In conclusion, in vitro culture techniques and drug screening methods previously established for E. multilocularis were successfully implemented for E. granulosus s.s., allowing comparisons of drug efficacy between the two species. This study provides in vitro culture techniques for the reliable generation of E. granulosus s.s. metacestode vesicles and GL cell cultures and describes the validation of standardized in vitro drug screening methods for E. granulosus s.s.


Asunto(s)
Echinococcus granulosus , Echinococcus multilocularis , Animales , Albendazol/farmacología , Albendazol/uso terapéutico , Niclosamida/farmacología , Evaluación Preclínica de Medicamentos/métodos
15.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37445632

RESUMEN

In T. gondii, as well as in other model organisms, gene knock-out using CRISPR-Cas9 is a suitable tool to identify the role of specific genes. The general consensus implies that only the gene of interest is affected by the knock-out. Is this really the case? In a previous study, we generated knock-out (KO) clones of TgRH88_077450 (SRS29B; SAG1) which differed in the numbers of the integrated dihydrofolate-reductase-thymidylate-synthase (MDHFR-TS) drug-selectable marker. Clones 18 and 33 had a single insertion of MDHFR-TS within SRS29B. Clone 6 was disrupted by the insertion of a short unrelated DNA-sequence, but the marker was integrated elsewhere. In clone 30, the marker was inserted into SRS29B, and several other MDHFR-TS copies were found in the genome. KO and wild-type (WT) tachyzoites had similar shapes, dimensions, and vitality. This prompted us to investigate the impact of genetic engineering on the overall proteome patterns of the four clones as compared to the respective WT. Comparative shotgun proteomics of the five strains was performed. Overall, 3236 proteins were identified. Principal component analysis of the proteomes revealed five distinct clusters corresponding to the five strains by both iTop3 and iLFQ algorithms. Detailed analysis of the differentially expressed proteins revealed that the target of the KO, srs29B, was lacking in all KO clones. In addition to this protein, 20 other proteins were differentially expressed between KO clones and WT or between different KO clones. The protein exhibiting the highest variation between the five strains was srs36D encoded by TgRH_016110. The deregulated expression of SRS36D was further validated by quantitative PCR. Moreover, the transcript levels of three other selected SRS genes, namely SRS36B, SRS46, and SRS57, exhibited significant differences between individual strains. These results indicate that knocking out a given gene may affect the expression of other genes. Therefore, care must be taken when specific phenotypes are regarded as a direct consequence of the KO of a given gene.


Asunto(s)
Toxoplasma , Toxoplasma/genética , Proteómica/métodos , Secuencia de Bases , Técnicas de Inactivación de Genes , Proteínas Protozoarias/genética , Proteínas Protozoarias/análisis , Células Clonales
17.
Expert Opin Ther Targets ; 27(4-5): 293-304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37212443

RESUMEN

INTRODUCTION: Toxoplasmosis constitutes a challenge for public health, animal production, and welfare. So far, only a limited panel of drugs has been marketed for clinical applications. In addition to classical screening, the investigation of unique targets of the parasite may lead to the identification of novel drugs. AREAS COVERED: Herein, the authors describe the methodology to identify novel drug targets in Toxoplasma gondii and review the literature with a focus on the last two decades. EXPERT OPINION: Over the last two decades, the investigation of essential proteins of T. gondii as potential drug targets has fostered the hope of identifying novel compounds for the treatment of toxoplasmosis. Despite good efficacies in vitro, only a few classes of these compounds are effective in suitable rodent models, and none has cleared the hurdle to applications in humans. This shows that target-based drug discovery is in no way better than classical screening approaches. In both cases, off-target effects and adverse side effects in the hosts must be considered. Proteomics-driven analyses of parasite- and host-derived proteins that physically bind drug candidates may constitute a suitable tool to characterize drug targets, irrespectively of the drug discovery methods.


Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Humanos , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/parasitología , Descubrimiento de Drogas , Sistemas de Liberación de Medicamentos
18.
Sci Rep ; 13(1): 8160, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208485

RESUMEN

Aedes aegypti, the principal global vector of arboviral diseases and previously considered to oviposit and undergo preimaginal development only in fresh water, has recently been shown to be capable of developing in coastal brackish water containing up to 15 g/L salt. We investigated surface changes in eggs and larval cuticles by atomic force and scanning electron microscopy, and larval susceptibility to two widely-used larvicides, temephos and Bacillus thuringiensis, in brackish water-adapted Ae. aegypti. Compared to freshwater forms, salinity-tolerant Ae. aegypti had rougher and less elastic egg surfaces, eggs that hatched better in brackish water, rougher larval cuticle surfaces, and larvae more resistant to the organophosphate insecticide temephos. Larval cuticle and egg surface changes in salinity-tolerant Ae. aegypti are proposed to respectively contribute to the increased temephos resistance and egg hatchability in brackish water. The findings highlight the importance of extending Aedes vector larval source reduction efforts to brackish water habitats and monitoring the efficacy of larvicides in coastal areas worldwide.


Asunto(s)
Aedes , Insecticidas , Animales , Temefós , Larva , Salinidad , Mosquitos Vectores , Insecticidas/farmacología , Resistencia a los Insecticidas
19.
Front Cell Infect Microbiol ; 13: 1162530, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37009502

RESUMEN

Alveolar (AE) and cystic echinococcosis (CE) are severe parasitic zoonoses caused by the larval stages of Echinococcus multilocularis and E. granulosus sensu lato, respectively. A panel of 7 monoclonal antibodies (mAbs) was selected against major diagnostic epitopes of both species. The binding capacity of the mAbs to Echinococcus spp. excretory/secretory products (ESP) was analyzed by sandwich-ELISA, where mAb Em2G11 and mAb EmG3 detected in vitro extravesicular ESP of both E. multilocularis and E. granulosus s.s. These findings were subsequently confirmed by the detection of circulating ESP in a subset of serum samples from infected hosts including humans. Extracellular vesicles (EVs) were purified, and the binding to mAbs was analyzed by sandwich-ELISA. Transmission electron microscopy (TEM) was used to confirm the binding of mAb EmG3 to EVs from intravesicular fluid of Echinococcus spp. vesicles. The specificity of the mAbs in ELISA corresponded to the immunohistochemical staining (IHC-S) patterns performed on human AE and CE liver sections. Antigenic small particles designated as ''spems'' for E. multilocularis and ''spegs'' for E. granulosus s.l. were stained by the mAb EmG3IgM, mAb EmG3IgG1, mAb AgB, and mAb 2B2, while mAb Em2G11 reacted with spems and mAb Eg2 with spegs only. The laminated layer (LL) of both species was strongly visualized by using mAb EmG3IgM, mAb EmG3IgG1, mAb AgB, and mAb 2B2. The LL was specifically stained by mAb Em2G11 in E. multilocularis and by mAb Eg2 in E. granulosus s.l. In the germinal layer (GL), including the protoscoleces, a wide staining pattern with all structures of both species was observed with mAb EmG3IgG1, mAb EmG3IgM, mAb AgB, mAb 2B2, and mAb Em18. In the GL and protoscoleces, the mAb Eg2 displayed a strong E. granulosus s.l. specific binding, while mAb Em2G11 exhibited a weak granular E. multilocularis specific reaction. The most notable staining pattern in IHC-S was found with mAb Em18, which solely bound to the GL and protoscoleces of Echinococcus species and potentially to primary cells. To conclude, mAbs represent valuable tools for the visualization of major antigens in the most important Echinococcus species, as well as providing insights into parasite-host interactions and pathogenesis.


Asunto(s)
Equinococosis , Echinococcus multilocularis , Vesículas Extracelulares , Animales , Humanos , Anticuerpos Monoclonales , Antígenos Helmínticos , Equinococosis/diagnóstico , Inmunoglobulina M
20.
Pathogens ; 12(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36986369

RESUMEN

The effects of decoquinate (DCQ) and three O-quinoline-carbamate-derivatives were investigated using human foreskin fibroblasts (HFF) infected with Neospora caninum tachyzoites. These compounds exhibited half-maximal proliferation inhibition (IC50s) from 1.7 (RMB060) to 60 nM (RMB055). Conversely, when applied at 5 (DCQ, RMB054) or 10µM (RMB055, RMB060), HFF viability was not affected. Treatments of infected cell cultures at 0.5µM altered the ultrastructure of the parasite mitochondrion and cytoplasm within 24 h, most pronounced for RMB060, and DCQ, RMB054 and RMB060 did not impair the viability of splenocytes from naïve mice. Long-term treatments of N. caninum-infected HFF monolayers with 0.5µM of each compound showed that only exposure to RMB060 over a period of six consecutive days had a parasiticidal effect, while the other compounds were not able to kill all tachyzoites in vitro. Thus, DCQ and RMB060 were comparatively assessed in the pregnant neosporosis mouse model. The oral application of these compounds suspended in corn oil at 10 mg/kg/day for 5 d resulted in a decreased fertility rate and litter size in the DCQ group, whereas reproductive parameters were not altered by RMB060 treatment. However, both compounds failed to protect mice from cerebral infection and did not prevent vertical transmission/pup mortality. Thus, despite the promising in vitro efficacy and safety characteristics of DCQ and DCQ-derivatives, proof of concept for activity against neosporosis could not be demonstrated in the murine model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA