Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Vet Microbiol ; 277: 109629, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36535174

RESUMEN

Coxiella burnetii, the causative agent of the zoonotic disease Q fever, has been shown to be endemic in Great Britain, but information on the prevailing genomic lineages or Genomic Groups (GGs) of Coxiella burnetii is limited. The aim of this study was to genotype C. burnetii isolates from infected farmed ruminants by Multiple Locus Variable Number Tandem Repeat Analysis (MLVA) and identify their associated Genomic Group. A total of 51 Coxiella-containing abortion samples from farmed ruminants (sheep, goats, and cattle), which were collected in Great Britain during 2013-2018, were included in the study, 34 of which returned a C. burnetii MLVA genotype. All bovine samples (n = 18), 5/7 of the ovine samples, and 3/9 of the caprine samples belonged to an MLVA cluster which we could link to the MST20 genotype of GG III, whereas 6/9 of the caprine samples and 2/7 of the ovine samples belonged to MLVA clusters which we could link to the MST33 or MST32 genotypes of GG II (7 vs 1 sample(s), respectively). We also noted that the Coxiella-specific com1 gene contained unique mutations that could genomotype isolates, i.e. assign them to a Genomic Group. In conclusion, both goats and sheep in Great Britain (from 2014 onward) were found to carry the same MLVA genotypes (MST33-like; GG II) that were linked to a human Q fever outbreak in the Netherlands. This knowledge in combination with the usage of genotyping/genomotyping methods should prove useful in future surveillance programs and in the management of outbreaks.


Asunto(s)
Enfermedades de los Bovinos , Coxiella burnetii , Enfermedades de las Cabras , Fiebre Q , Enfermedades de las Ovejas , Animales , Bovinos , Ovinos , Humanos , Coxiella burnetii/genética , Fiebre Q/epidemiología , Fiebre Q/veterinaria , Cabras , Genotipo , Reino Unido/epidemiología , Enfermedades de las Cabras/epidemiología , Enfermedades de las Ovejas/epidemiología , Enfermedades de los Bovinos/epidemiología
2.
Pathogens ; 10(5)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069306

RESUMEN

Coxiella burnetii is a zoonotic pathogen that resides in wild and domesticated animals across the globe and causes a febrile illness, Q fever, in humans. Several distinct genetic lineages or genomic groups have been shown to exist, with evidence for different virulence potential of these lineages. Multispacer Sequence Typing (MST) and Multiple-Locus Variable number tandem repeat Analysis (MLVA) are being used to genotype strains. However, it is unclear how these typing schemes correlate with each other or with the classification into different genomic groups. Here, we created extensive databases for published MLVA and MST genotypes of C. burnetii and analysed the associated metadata, revealing associations between animal host and human disease type. We established a new classification scheme that assigns both MST and MLVA genotypes to a genomic group and which revealed additional sub-lineages in two genomic groups. Finally, we report a novel, rapid genomotyping method for assigning an isolate into a genomic group based on the Cox51 spacer sequence. We conclude that by pooling and streamlining existing datasets, associations between genotype and clinical outcome or host source were identified, which in combination with our novel genomotyping method, should enable an estimation of the disease potential of new C. burnetii isolates.

3.
Front Microbiol ; 11: 72, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153515

RESUMEN

Burkholderia pseudomallei, the causative agent of melioidosis, can survive and replicate in macrophages. Little is known about B. pseudomallei genes that are induced during macrophage infection. We constructed a B. pseudomallei K96243 promoter trap library with genomic DNA fragments fused to the 5' end of a plasmid-borne gene encoding enhanced green fluorescent protein (eGFP). Microarray analysis showed that the library spanned 88% of the B. pseudomallei genome. The recombinant plasmids were introduced into Burkholderia thailandensis E264, and promoter fusions active during in vitro culture were removed. J774A.1 murine macrophages were infected with the promoter trap library, and J774A.1 cells containing fluorescent bacteria carrying plasmids with active promoters were isolated using flow cytometric-based cell sorting. Candidate macrophage-induced B. pseudomallei genes were identified from the location of the insertions containing an active promoter activity. A proportion of the 138 genes identified in this way have been previously reported to be involved in metabolism and transport, virulence, or adaptation. Novel macrophage-induced B. pseudomallei genes were also identified. Quantitative reverse-transcription PCR analysis of 13 selected genes confirmed gene induction during macrophage infection. Deletion mutants of two macrophage-induced genes from this study were attenuated in Galleria mellonella larvae, suggesting roles in virulence. B. pseudomallei genes activated during macrophage infection may contribute to intracellular life and pathogenesis and merit further investigation toward control strategies for melioidosis.

4.
J Med Microbiol ; 68(10): 1419-1430, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31424378

RESUMEN

Coxiella burnetii is an obligate intracellular pathogen that causes the zoonotic disease Q fever in humans, which can occur in either an acute or a chronic form with serious complications. The bacterium has a wide host range, including unicellular organisms, invertebrates, birds and mammals, with livestock representing the most significant reservoir for human infections. Cell culture models have been used to decipher the intracellular lifestyle of C. burnetii, and several infection models, including invertebrates, rodents and non-human primates, are being used to investigate host-pathogen interactions and to identify bacterial virulence factors and vaccine candidates. However, none of the models replicate all aspects of human disease. Furthermore, it is becoming evident that C. burnetii isolates belonging to different lineages exhibit differences in their virulence in these models. Here, we compare the advantages and disadvantages of commonly used infection models and summarize currently available data for lineage-specific virulence.


Asunto(s)
Coxiella burnetii/aislamiento & purificación , Coxiella burnetii/patogenicidad , Modelos Animales de Enfermedad , Macaca fascicularis , Fiebre Q/microbiología , Animales , Coxiella burnetii/clasificación , Coxiella burnetii/genética , Humanos , Filogenia , Especificidad de la Especie , Virulencia
5.
BMC Genomics ; 20(1): 441, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31164106

RESUMEN

BACKGROUND: Coxiella burnetii is a zoonotic pathogen that resides in wild and domesticated animals across the globe and causes a febrile illness, Q fever, in humans. An improved understanding of the genetic diversity of C. burnetii is essential for the development of diagnostics, vaccines and therapeutics, but genotyping data is lacking from many parts of the world. Sporadic outbreaks of Q fever have occurred in the United Kingdom, but the local genetic make-up of C. burnetii has not been studied in detail. RESULTS: Here, we report whole genome data for nine C. burnetii sequences obtained in the UK. All four genomes of C. burnetii from cattle, as well as one sheep sample, belonged to Multi-spacer sequence type (MST) 20, whereas the goat samples were MST33 (three genomes) and MST32 (one genome), two genotypes that have not been described to be present in the UK to date. We established the phylogenetic relationship between the UK genomes and 67 publically available genomes based on single nucleotide polymorphisms (SNPs) in the core genome, which confirmed tight clustering of strains within genomic groups, but also indicated that sub-groups exist within those groups. Variation is mainly achieved through SNPs, many of which are non-synonymous, thereby confirming that evolution of C. burnetii is based on modification of existing genes. Finally, we discovered genomic-group specific genome content, which supports a model of clonal expansion of previously established genotypes, with large scale dissemination of some of these genotypes across continents being observed. CONCLUSIONS: The genetic make-up of C. burnetii in the UK is similar to the one in neighboring European countries. As a species, C. burnetii has been considered a clonal pathogen with low genetic diversity at the nucleotide level. Here, we present evidence for significant variation at the protein level between isolates of different genomic groups, which mainly affects secreted and membrane-associated proteins. Our results thereby increase our understanding of the global genetic diversity of C. burnetii and provide new insights into the evolution of this emerging zoonotic pathogen.


Asunto(s)
Coxiella burnetii/genética , Genoma Bacteriano , Animales , Bovinos , Coxiella burnetii/clasificación , Coxiella burnetii/aislamiento & purificación , Evolución Molecular , Estudio de Asociación del Genoma Completo , Genómica , Técnicas de Genotipaje , Filogenia , Reino Unido
6.
BMC Genomics ; 15: 787, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25214426

RESUMEN

BACKGROUND: Burkholderia pseudomallei, the causative agent of melioidosis, is a Gram-negative bacterium widely distributed in soil and water in endemic areas. This soil saprophyte can survive harsh environmental conditions, even in soils where herbicides (containing superoxide generators) are abundant. Sigma factor E (σE) is a key regulator of extra-cytoplasmic stress response in Gram-negative bacteria. In this study, we identified the B. pseudomallei σE regulon and characterized the indirect role that σE plays in the regulation of spermidine, contributing to the successful survival of B. pseudomallei in stressful environments. RESULTS: Changes in the global transcriptional profiles of B. pseudomallei wild type and σE mutant under physiological and oxidative stress (hydrogen peroxide) conditions were determined. We identified 307 up-regulated genes under oxidative stress condition. Comparison of the transcriptional profiles of B. pseudomallei wild type and σE mutant under control or oxidative stress conditions identified 85 oxidative-responsive genes regulated by σE, including genes involved in cell membrane repair, maintenance of protein folding and oxidative stress response and potential virulence factors such as a type VI secretion system (T6SS). Importantly, we identified that the speG gene, encoding spermidine-acetyltransferase, is a novel member of the B. pseudomallei σE regulon. The expression of speG was regulated by σE, implying that σE plays an indirect role in the regulation of physiological level of spermidine to protect the bacteria during oxidative stress. CONCLUSION: This study identified B. pseudomallei genes directly regulated by σE in response to oxidative stress and revealed the indirect role of σE in the regulation of the polyamine spermidine (via regulation of speG) for bacterial cell protection during oxidative stress. This study provides new insights into the regulatory mechanisms by which σE contributes to the survival of B. pseudomallei under stressful conditions.


Asunto(s)
Acetiltransferasas/genética , Proteínas Bacterianas/genética , Burkholderia pseudomallei/crecimiento & desarrollo , Peróxido de Hidrógeno/farmacología , Factor sigma/metabolismo , Burkholderia pseudomallei/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Factor sigma/genética , Microbiología del Suelo , Espermidina/metabolismo
7.
Antimicrob Agents Chemother ; 58(10): 5775-83, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25049258

RESUMEN

Noninherited antibiotic resistance is a phenomenon whereby a subpopulation of genetically identical bacteria displays phenotypic tolerance to antibiotics. We show here that compared to Escherichia coli, the clinically relevant genus Burkholderia displays much higher levels of cells that tolerate ceftazidime. By measuring the dynamics of the formation of drug-tolerant cells under conditions that mimic in vivo infections, we show that in Burkholderia bacteria, oxygen levels affect the formation of these cells. The drug-tolerant cells are characterized by an anaerobic metabolic signature and can be eliminated by oxygenating the system or adding nitrate. The transcriptome profile suggests that these cells are not dormant persister cells and are likely to be drug tolerant as a consequence of the upregulation of anaerobic nitrate respiration, efflux pumps, ß-lactamases, and stress response proteins. These findings have important implications for the treatment of chronic bacterial infections and the methodologies and conditions that are used to study drug-tolerant and persister cells in vitro.


Asunto(s)
Antibacterianos/farmacología , Burkholderia/efectos de los fármacos , Burkholderia/metabolismo , Anaerobiosis , Ceftazidima/farmacología , Farmacorresistencia Microbiana , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
8.
mBio ; 5(1): e00926-13, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24520057

RESUMEN

UNLABELLED: Burkholderia pseudomallei is the causative agent of melioidosis, an often fatal infectious disease for which there is no vaccine. B. pseudomallei is listed as a tier 1 select agent, and as current therapeutic options are limited due to its natural resistance to most antibiotics, the development of new antimicrobial therapies is imperative. To identify drug targets and better understand the complex B. pseudomallei genome, we sought a genome-wide approach to identify lethal gene targets. As B. pseudomallei has an unusually large genome spread over two chromosomes, an extensive screen was required to achieve a comprehensive analysis. Here we describe transposon-directed insertion site sequencing (TraDIS) of a library of over 10(6) transposon insertion mutants, which provides the level of genome saturation required to identify essential genes. Using this technique, we have identified a set of 505 genes that are predicted to be essential in B. pseudomallei K96243. To validate our screen, three genes predicted to be essential, pyrH, accA, and sodB, and a gene predicted to be nonessential, bpss0370, were independently investigated through the generation of conditional mutants. The conditional mutants confirmed the TraDIS predictions, showing that we have generated a list of genes predicted to be essential and demonstrating that this technique can be used to analyze complex genomes and thus be more widely applied. IMPORTANCE: Burkholderia pseudomallei is a lethal human pathogen that is considered a potential bioterrorism threat and has limited treatment options due to an unusually high natural resistance to most antibiotics. We have identified a set of genes that are required for bacterial growth and thus are excellent candidates against which to develop potential novel antibiotics. To validate our approach, we constructed four mutants in which gene expression can be turned on and off conditionally to confirm that these genes are required for the bacteria to survive.


Asunto(s)
Burkholderia pseudomallei/genética , Genes Bacterianos , Genes Esenciales , Genoma Bacteriano , Mutagénesis Insercional , Elementos Transponibles de ADN , ADN Bacteriano/química , ADN Bacteriano/genética , Análisis de Secuencia de ADN
9.
Biochem J ; 459(2): 333-44, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24502667

RESUMEN

TA (toxin-antitoxin) systems are widely distributed amongst bacteria and are associated with the formation of antibiotic tolerant (persister) cells that may have involvement in chronic and recurrent disease. We show that overexpression of the Burkholderia pseudomallei HicA toxin causes growth arrest and increases the number of persister cells tolerant to ciprofloxacin or ceftazidime. Furthermore, our data show that persistence towards ciprofloxacin or ceftazidime can be differentially modulated depending on the level of induction of HicA expression. Deleting the hicAB locus from B. pseudomallei K96243 significantly reduced persister cell frequencies following exposure to ciprofloxacin, but not ceftazidime. The structure of HicA(H24A) was solved by NMR and forms a dsRBD-like (dsRNA-binding domain-like) fold, composed of a triple-stranded ß-sheet, with two helices packed against one face. The surface of the protein is highly positively charged indicative of an RNA-binding protein and His24 and Gly22 were functionality important residues. This is the first study demonstrating a role for the HicAB system in bacterial persistence and the first structure of a HicA protein that has been experimentally characterized.


Asunto(s)
Toxinas Bacterianas/metabolismo , Burkholderia pseudomallei/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Burkholderia pseudomallei/citología , Burkholderia pseudomallei/efectos de los fármacos , Burkholderia pseudomallei/genética , Ceftazidima/farmacología , Ciprofloxacina/farmacología , Clonación Molecular , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/fisiología , Pruebas de Sensibilidad Microbiana , Mutación , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , ARN Bicatenario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA