Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
2.
Dev Cell ; 59(7): 830-840.e4, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38377991

RESUMEN

Tissue repair requires a highly coordinated cellular response to injury. In the lung, alveolar type 2 cells (AT2s) act as stem cells to replenish both themselves and alveolar type 1 cells (AT1s); however, the complex orchestration of stem cell activity after injury is poorly understood. Here, we establish longitudinal imaging of AT2s in murine intact tissues ex vivo and in vivo in order to track their dynamic behavior over time. We discover that a large fraction of AT2s become motile following injury and provide direct evidence for their migration between alveolar units. High-resolution morphokinetic mapping of AT2s further uncovers the emergence of distinct motile phenotypes. Inhibition of AT2 migration via genetic depletion of ArpC3 leads to impaired regeneration of AT2s and AT1s in vivo. Together, our results establish a requirement for stem cell migration between alveolar units and identify properties of stem cell motility at high cellular resolution.


Asunto(s)
Células Epiteliales Alveolares , Pulmón , Ratones , Animales , Pulmón/fisiología , Células Epiteliales Alveolares/metabolismo , Células Madre/metabolismo , Movimiento Celular , Diferenciación Celular/fisiología
3.
Cell ; 186(14): 2951-2955, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37419083

RESUMEN

The current model for academic leadership places unique demands on scientists with highly active research programs. A complimentary model with a dedicated scientific director could remove this strain and allow a greater institutional investment in the community via a partnership. This article explores the rationale and framework of this model.


Asunto(s)
Liderazgo
4.
J Cell Biol ; 222(7)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37102999

RESUMEN

Skin homeostasis is maintained by stem cells, which must communicate to balance their regenerative behaviors. Yet, how adult stem cells signal across regenerative tissue remains unknown due to challenges in studying signaling dynamics in live mice. We combined live imaging in the mouse basal stem cell layer with machine learning tools to analyze patterns of Ca2+ signaling. We show that basal cells display dynamic intercellular Ca2+ signaling among local neighborhoods. We find that these Ca2+ signals are coordinated across thousands of cells and that this coordination is an emergent property of the stem cell layer. We demonstrate that G2 cells are required to initiate normal levels of Ca2+ signaling, while connexin43 connects basal cells to orchestrate tissue-wide coordination of Ca2+ signaling. Lastly, we find that Ca2+ signaling drives cell cycle progression, revealing a communication feedback loop. This work provides resolution into how stem cells at different cell cycle stages coordinate tissue-wide signaling during epidermal regeneration.


Asunto(s)
Señalización del Calcio , Calcio , Puntos de Control del Ciclo Celular , Epidermis , Animales , Ratones , Calcio/metabolismo , Ciclo Celular , Epidermis/metabolismo
6.
Mol Cell ; 82(5): 986-1002.e9, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182480

RESUMEN

Upon fertilization, embryos undergo chromatin reprogramming and genome activation; however, the mechanisms that regulate these processes are poorly understood. Here, we generated a triple mutant for Nanog, Pou5f3, and Sox19b (NPS) in zebrafish and found that NPS pioneer chromatin opening at >50% of active enhancers. NPS regulate acetylation across core histones at enhancers and promoters, and their function in gene activation can be bypassed by recruiting histone acetyltransferase to individual genes. NPS pioneer chromatin opening individually, redundantly, or additively depending on sequence context, and we show that high nucleosome occupancy facilitates NPS pioneering activity. Nucleosome position varies based on the input of different transcription factors (TFs), providing a flexible platform to modulate pioneering activity. Altogether, our results illuminate the sequence of events during genome activation and offer a conceptual framework to understand how pioneer factors interpret the genome and integrate different TF inputs across cell types and developmental transitions.


Asunto(s)
Cromatina , Nucleosomas , Animales , Cromatina/genética , Genoma/genética , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Factores de Transcripción SOX/genética , Factores de Transcripción SOX/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
JCI Insight ; 7(4)2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35108221

RESUMEN

The molecular mechanisms that drive the acquisition of distinct neural crest cell (NCC) fates is still poorly understood. Here, we identified Prdm6 as an epigenetic modifier that temporally and spatially regulates the expression of NCC specifiers and determines the fate of a subset of migrating cardiac NCCs (CNCCs). Using transcriptomic analysis and genetic and fate mapping approaches in transgenic mice, we showed that disruption of Prdm6 was associated with impaired CNCC differentiation, delamination, and migration and led to patent ductus arteriosus (DA) and ventricular noncompaction. Bulk and single-cell RNA-Seq analyses of the DA and CNCCs identified Prdm6 as a regulator of a network of CNCC specification genes, including Wnt1, Tfap2b, and Sox9. Loss of Prdm6 in CNCCs diminished its expression in the pre-epithelial-mesenchymal transition (pre-EMT) cluster, resulting in the retention of NCCs in the dorsal neural tube. This defect was associated with diminished H4K20 monomethylation and G1-S progression and augmented Wnt1 transcript levels in pre-EMT and neural tube clusters, which we showed was the major driver of the impaired CNCC migration. Altogether, these findings revealed Prdm6 as a key regulator of CNCC differentiation and migration and identified Prdm6 and its regulated network as potential targets for the treatment of congenital heart diseases.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/genética , Cresta Neural/patología , Organogénesis/genética , ARN/genética , Proteínas Represoras/genética , Animales , Diferenciación Celular , Movimiento Celular , Modelos Animales de Enfermedad , Femenino , Cardiopatías Congénitas/metabolismo , Ratones , Ratones Noqueados , Cresta Neural/metabolismo , Proteínas Represoras/metabolismo
8.
J Am Soc Nephrol ; 24(9): 1424-34, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23766537

RESUMEN

Direct reprogramming involves the enforced re-expression of key transcription factors to redefine a cellular state. The nephron progenitor population of the embryonic kidney gives rise to all cells within the nephron other than the collecting duct through a mesenchyme-to-epithelial transition, but this population is exhausted around the time of birth. Here, we sought to identify the conditions under which adult proximal tubule cells could be directly transcriptionally reprogrammed to nephron progenitors. Using a combinatorial screen for lineage-instructive transcription factors, we identified a pool of six genes (SIX1, SIX2, OSR1, EYA1, HOXA11, and SNAI2) that activated a network of genes consistent with a cap mesenchyme/nephron progenitor phenotype in the adult proximal tubule (HK2) cell line. Consistent with these reprogrammed cells being nephron progenitors, we observed differential contribution of the reprogrammed population into the Six2(+) nephron progenitor fields of an embryonic kidney explant. Dereplication of the pool suggested that SNAI2 can suppress E-CADHERIN, presumably assisting in the epithelial-to-mesenchymal transition (EMT) required to form nephron progenitors. However, neither TGFß-induced EMT nor SNAI2 overexpression alone was sufficient to create this phenotype, suggesting that additional factors are required. In conclusion, these results suggest that reinitiation of kidney development from a population of adult cells by generating embryonic progenitors may be feasible, opening the way for additional cellular and bioengineering approaches to renal repair and regeneration.


Asunto(s)
Diferenciación Celular/fisiología , Túbulos Renales Proximales/citología , Nefronas/embriología , Células Madre/citología , Factores de Transcripción/fisiología , Transcripción Genética/genética , Cadherinas/genética , Cadherinas/fisiología , Transición Epitelial-Mesenquimal/fisiología , Pruebas Genéticas/métodos , Células HEK293 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Humanos , Túbulos Renales Proximales/fisiología , Nefronas/citología , Fenotipo , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética
9.
Cell Stem Cell ; 13(2): 205-18, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23770078

RESUMEN

Definitive hematopoiesis emerges during embryogenesis via an endothelial-to-hematopoietic transition. We attempted to induce this process in mouse fibroblasts by screening a panel of factors for hemogenic activity. We identified a combination of four transcription factors, Gata2, Gfi1b, cFos, and Etv6, that efficiently induces endothelial-like precursor cells, with the subsequent appearance of hematopoietic cells. The precursor cells express a human CD34 reporter, Sca1, and Prominin1 within a global endothelial transcription program. Emergent hematopoietic cells possess nascent hematopoietic stem cell gene-expression profiles and cell-surface phenotypes. After transgene silencing and reaggregation culture, the specified cells generate hematopoietic colonies in vitro. Thus, we show that a simple combination of transcription factors is sufficient to induce a complex, dynamic, and multistep developmental program in vitro. These findings provide insights into the specification of definitive hemogenesis and a platform for future development of patient-specific stem and progenitor cells, as well as more-differentiated blood products.


Asunto(s)
Fibroblastos/metabolismo , Hematopoyesis , Animales , Biomarcadores/metabolismo , Agregación Celular , Linaje de la Célula/genética , Membrana Celular/metabolismo , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Células Endoteliales/citología , Células Endoteliales/metabolismo , Fibroblastos/citología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Hematopoyesis/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Fenotipo , Factores de Transcripción/metabolismo
10.
Plant Mol Biol ; 81(4-5): 327-36, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23263857

RESUMEN

The availability of a variety of promoter sequences is necessary for the genetic engineering of plants, in basic research studies and for the development of transgenic crops. In this study, the promoter and 5' untranslated regions of the evolutionally conserved protein translation factor SUI1 gene and ribosomal protein L36 gene were isolated from pineapple and sequenced. Each promoter was translationally fused to the GUS reporter gene and transformed into the heterologous plant system Arabidopsis thaliana. Both the pineapple SUI1 and L36 promoters drove GUS expression in all tissues of Arabidopsis at levels comparable to the CaMV35S promoter. Transient assays determined that the pineapple SUI1 promoter also drove GUS expression in a variety of climacteric and non-climacteric fruit species. Thus the pineapple SUI1 and L36 promoters demonstrate the potential for using translation factor and ribosomal protein genes as a source of promoter sequences that can drive constitutive transgene expression patterns.


Asunto(s)
Ananas/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Transgenes/genética , Ananas/metabolismo , Secuencia de Bases , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Fluorometría , Frutas/genética , Glucuronidasa/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
11.
Kidney Int ; 82(2): 138-46, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22437414

RESUMEN

Nuclear reprogramming has reshaped stem cell science and created new avenues for cell-based therapies. The ability to bestow any given phenotype upon adult cells regardless of their origin is an exciting possibility. How can this powerful tool be harnessed for the treatment of kidney disease? Many approaches, including induced pluripotent stem cell (iPSC) production, direct lineage conversion, and reprogramming to a kidney progenitor, are now possible. Indeed, the generation of iPSC lines from adult kidney-derived cells has been successfully achieved. This, however, is just the beginning of the challenge. This review will discuss the fundamental concepts of transcription factor-based reprogramming in its various forms, highlighting recent advances in the field and how these are applicable to the kidney. The relative merits of each approach will be discussed in the context of what is a realistic and feasible strategy for kidney regeneration via reprogramming.


Asunto(s)
Reprogramación Celular , Enfermedades Renales/terapia , Riñón/fisiopatología , Regeneración/genética , Medicina Regenerativa , Células Madre , Animales , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Genotipo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/fisiopatología , Fenotipo , Células Madre/metabolismo , Células Madre/patología
12.
Pediatr Nephrol ; 26(9): 1395-406, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21229268

RESUMEN

It has long been appreciated that the mammalian kidney arises via reciprocal interactions between an epithelial ureteric epithelium and the surrounding metanephric mesenchyme. More recently, lineage tracing has confirmed that the portion of the metanephric mesenchyme closest to the advancing ureteric tips, the cap mesenchyme, represents the progenitor population for the nephron epithelia. This Six2(+)Cited1(+) population undergoes self-renewal throughout nephrogenesis while retaining the potential to epithelialize. In contrast, the Foxd1(+) portion of the metanephric mesenchyme shows no epithelial potential, developing instead into the interstitial, perivascular, and possibly endothelial elements of the kidney. The cap mesenchyme rests within a nephrogenic niche, surrounded by the stroma and the ureteric tip. While the role of Wnt signaling in nephron induction is known, there remains a lack of clarity over the intrinsic and extrinsic regulation of cap mesenchyme specification, self-renewal, and nephron potential. It is also not known what regulates cessation of nephrogenesis, but there is no nephron generation in response to injury during the postnatal period. In this review, we will examine what is and is not known about this nephron progenitor population and discuss how an increased understanding of the regulation of this population may better explain the observed variation in final nephron number and potentially facilitate the reinitiation or prolongation of nephron formation.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Mesenquimatosas/fisiología , Nefronas/embriología , Animales , Proliferación Celular , Transición Epitelial-Mesenquimal , Humanos , Organogénesis , Nicho de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA