Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
World J Mens Health ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39028130

RESUMEN

The effects of smoking on human health have long been documented. However, only a few studies have highlighted the direct effects of nicotine on sperm function. Nicotine, as a chemical compound found in tobacco, has been shown to modulate different aspects of spermatogenesis and sperm functions. Nicotine can lead to a reduction in the number of sperm, their motility and functionality. It can change the molecular expressions involved in sperm function, including genes encoding sperm nuclear proteins. The most important nuclear proteins that play a critical role in sperm function are known as H2B histone family, member W, testis-specific (H2BFWT), transition protein 1 (TNP1), transition protein 2 (TNP2), protamine-1 (PRM1), and protamine-2 (PRM2). These proteins are involved in sperm chromatin condensation, which in turn affects fertilization and embryonic development. Any alteration in the expression of these genes due to nicotine exposure/usage may lead to adverse implications in couples' fertility and the health of future generations. Since research in this area is still relatively new, it underscores the importance of understanding the potential side effects of environmental factors such as nicotine on reproductive health.

2.
Reprod Biol Endocrinol ; 22(1): 83, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020374

RESUMEN

BACKGROUND: Besides adenine triphosphate (ATP) production for sustaining motility, the mitochondria of sperm also host other critical cellular functions during germ cell development and fertilization including calcium homeostasis, generation of reactive oxygen species (ROS), apoptosis, and in some cases steroid hormone biosynthesis. Normal mitochondrial membrane potential with optimal mitochondrial performance is essential for sperm motility, capacitation, acrosome reaction, and DNA integrity. RESULTS: Defects in the sperm mitochondrial function can severely harm the fertility potential of males. The role of sperm mitochondria in fertilization and its final fate after fertilization is still controversial. Here, we review the current knowledge on human sperm mitochondria characteristics and their physiological and pathological conditions, paying special attention to improvements in assistant reproductive technology and available treatments to ameliorate male infertility. CONCLUSION: Although mitochondrial variants associated with male infertility have potential clinical use, research is limited. Further understanding is needed to determine how these characteristics lead to adverse pregnancy outcomes and affect male fertility potential.


Asunto(s)
Fertilidad , Infertilidad Masculina , Mitocondrias , Espermatozoides , Humanos , Masculino , Infertilidad Masculina/fisiopatología , Infertilidad Masculina/metabolismo , Espermatozoides/metabolismo , Espermatozoides/fisiología , Mitocondrias/metabolismo , Mitocondrias/fisiología , Fertilidad/fisiología , Motilidad Espermática/fisiología , Femenino , Especies Reactivas de Oxígeno/metabolismo , Animales
3.
J Clin Med ; 13(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38792382

RESUMEN

Infertility is a globally underestimated public health concern affecting almost 190 million people, i.e., about 17.5% of people during their lifetime, while the prevalence of male factor infertility is about 7%. Among numerous other causes, the prevalence of male genital tract infections reportedly ranges between 10% and 35%. Leukocytospermia is found in 30% of infertile men and up to 20% in fertile men. Bacterial infections cause an inflammatory response attracting leukocytes, which produce reactive oxygen species (ROS) and release cytokines, both of which can cause damage to sperm, rendering them dysfunctional. Although leukocytospermia and bacteriospermia are both clinical conditions that can negatively affect male fertility, there is still debate about their impact on assisted reproduction outcomes and management. According to World Health Organization (WHO) guidelines, leukocytes should be determined by means of the Endtz test or with monoclonal antibodies against CD15, CD68 or CD22. The cut-off value proposed by the WHO is 1 × 106 peroxidase-positive cells/mL. For bacteria, Gram staining and semen culture are regarded as the "gold standard", while modern techniques such as PCR and next-generation sequencing (NGS) are allowing clinicians to detect a wider range of pathogens. Whereas the WHO manual does not specify a specific value as a cut-off for bacterial contamination, several studies consider semen samples with more than 103 colony-forming units (cfu)/mL as bacteriospermic. The pathogenic mechanisms leading to sperm dysfunction include direct interaction of bacteria with the male germ cells, bacterial release of spermatotoxic substances, induction of pro-inflammatory cytokines and ROS, all of which lead to oxidative stress. Clinically, bacterial infections, including "silent" infections, are treatable, with antibiotics being the treatment of choice. Yet, non-steroidal antiphlogistics or antioxidants should also be considered to alleviate inflammatory lesions and improve semen quality. In an assisted reproduction set up, sperm separation techniques significantly reduce the bacterial load in the semen. Nonetheless, contamination of the semen sample with skin commensals should be prevented by applying relevant hygiene techniques. In patients where leukocytospermia is detected, the causes (e.g. infection, inflammation, varicocele, smoking, etc.) of the leukocyte infiltration have to be identified and addressed with antibiotics, anti-inflammatories or antioxidants in cases where high oxidative stress levels are detected. However, no specific strategy is available for the management of leukocytospermia. Therefore, the relationship between bacteriospermia and leukocytospermia as well as their specific impact on functional sperm parameters and reproductive outcome variables such as fertilization or clinical pregnancy must be further investigated. The aim of this narrative review is to provide an update on the current knowledge on leukocytospermia and bacteriospermia and their impact on male fertility.

4.
World J Mens Health ; 42(1): 202-215, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37635341

RESUMEN

PURPOSE: Sperm DNA fragmentation (SDF) is a functional sperm abnormality that can impact reproductive potential, for which four assays have been described in the recently published sixth edition of the WHO laboratory manual for the examination and processing of human semen. The purpose of this study was to examine the global practices related to the use of SDF assays and investigate the barriers and limitations that clinicians face in incorporating these tests into their practice. MATERIALS AND METHODS: Clinicians managing male infertility were invited to complete an online survey on practices related to SDF diagnostic and treatment approaches. Their responses related to the technical aspects of SDF testing, current professional society guidelines, and the literature were used to generate expert recommendations via the Delphi method. Finally, challenges related to SDF that the clinicians encounter in their daily practice were captured. RESULTS: The survey was completed by 436 reproductive clinicians. Overall, terminal deoxynucleotidyl transferase deoxyuridine triphosphate Nick-End Labeling (TUNEL) is the most commonly used assay chosen by 28.6%, followed by the sperm chromatin structure assay (24.1%), and the sperm chromatin dispersion (19.1%). The choice of the assay was largely influenced by availability (70% of respondents). A threshold of 30% was the most selected cut-off value for elevated SDF by 33.7% of clinicians. Of respondents, 53.6% recommend SDF testing after 3 to 5 days of abstinence. Although 75.3% believe SDF testing can provide an explanation for many unknown causes of infertility, the main limiting factors selected by respondents are a lack of professional society guideline recommendations (62.7%) and an absence of globally accepted references for SDF interpretation (50.3%). CONCLUSIONS: This study represents the largest global survey on the technical aspects of SDF testing as well as the barriers encountered by clinicians. Unified global recommendations regarding clinician implementation and standard laboratory interpretation of SDF testing are crucial.

5.
J Clin Endocrinol Metab ; 109(2): 449-460, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37656983

RESUMEN

INTRODUCTION: Obesity increases risks of male infertility, but bariatric surgery does not improve semen quality. Recent uncontrolled studies suggest that a low-energy diet (LED) improves semen quality. Further evaluation within a randomized, controlled setting is warranted. METHODS: Men with obesity (18-60 years) with normal sperm concentration (normal count) (n = 24) or oligozoospermia (n = 43) were randomized 1:1 to either 800 kcal/day LED for 16 weeks or control, brief dietary intervention (BDI) with 16 weeks' observation. Semen parameters were compared at baseline and 16 weeks. RESULTS: Mean age of men with normal count was 39.4 ± 6.4 in BDI and 40.2 ± 9.6 years in the LED group. Mean age of men with oligozoospermia was 39.5 ± 7.5 in BDI and 37.7 ± 6.6 years in the LED group. LED caused more weight loss than BDI in men with normal count (14.4 vs 6.3 kg; P < .001) and men with oligozoospermia (17.6 vs 1.8 kg; P < .001). Compared with baseline, in men with normal count total motility (TM) increased 48 ± 17% to 60 ± 10% (P < .05) after LED, and 52 ± 8% to 61 ± 6% (P < .0001) after BDI; progressive motility (PM) increased 41 ± 16% to 53 ± 10% (P < .05) after LED, and 45 ± 8% to 54 ± 65% (P < .001) after BDI. In men with oligozoospermia compared with baseline, TM increased 35% [26] to 52% [16] (P < .05) after LED, and 43% [28] to 50% [23] (P = .0587) after BDI; PM increased 29% [23] to 46% [18] (P < .05) after LED, and 33% [25] to 44% [25] (P < .05) after BDI. No differences in postintervention TM or PM were observed between LED and BDI groups in men with normal count or oligozoospermia. CONCLUSION: LED or BDI may be sufficient to improve sperm motility in men with obesity. The effects of paternal dietary intervention on fertility outcomes requires investigation.


Asunto(s)
Infertilidad Masculina , Oligospermia , Masculino , Humanos , Análisis de Semen , Motilidad Espermática , Semen , Recuento de Espermatozoides , Infertilidad Masculina/etiología , Espermatozoides , Obesidad/complicaciones , Obesidad/cirugía
6.
World J Mens Health ; 42(1): 92-132, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37382284

RESUMEN

PURPOSE: The purpose of this meta-analysis is to study the impact of varicocele repair in the largest cohort of infertile males with clinical varicocele by including all available studies, with no language restrictions, comparing intra-person conventional semen parameters before and after the repair of varicoceles. MATERIALS AND METHODS: The meta-analysis was performed according to PRISMA-P and MOOSE guidelines. A systematic search was performed in Scopus, PubMed, Cochrane, and Embase databases. Eligible studies were selected according to the PICOS model (Population: infertile male patients with clinical varicocele; Intervention: varicocele repair; Comparison: intra-person before-after varicocele repair; Outcome: conventional semen parameters; Study type: randomized controlled trials [RCTs], observational and case-control studies). RESULTS: Out of 1,632 screened abstracts, 351 articles (23 RCTs, 292 observational, and 36 case-control studies) were included in the quantitative analysis. The before-and-after analysis showed significant improvements in all semen parameters after varicocele repair (except sperm vitality); semen volume: standardized mean difference (SMD) 0.203, 95% CI: 0.129-0.278; p<0.001; I²=83.62%, Egger's p=0.3329; sperm concentration: SMD 1.590, 95% CI: 1.474-1.706; p<0.001; I²=97.86%, Egger's p<0.0001; total sperm count: SMD 1.824, 95% CI: 1.526-2.121; p<0.001; I²=97.88%, Egger's p=0.0063; total motile sperm count: SMD 1.643, 95% CI: 1.318-1.968; p<0.001; I²=98.65%, Egger's p=0.0003; progressive sperm motility: SMD 1.845, 95% CI: 1.537%-2.153%; p<0.001; I²=98.97%, Egger's p<0.0001; total sperm motility: SMD 1.613, 95% CI 1.467%-1.759%; p<0.001; l2=97.98%, Egger's p<0.001; sperm morphology: SMD 1.066, 95% CI 0.992%-1.211%; p<0.001; I²=97.87%, Egger's p=0.1864. CONCLUSIONS: The current meta-analysis is the largest to date using paired analysis on varicocele patients. In the current meta-analysis, almost all conventional semen parameters improved significantly following varicocele repair in infertile patients with clinical varicocele.

7.
J Biochem Mol Toxicol ; 38(1): e23562, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37842800

RESUMEN

In this study, we performed the stereological examination of rat testes and evaluated the protective effect of testosterone against atrazine (ATZ) toxicity in TM3 Leydig and TM4 Sertoli cells. Testosterone intake in rats increased the volumetric density of the seminiferous tubules; tubular diameter; germinal epithelial height; number of spermatogonia, primary and secondary spermatocytes, round spermatids, Sertoli cells, and Leydig cells; and Johnsen scores compared with the values after ATZ treatment (p < 0.05). Furthermore, testosterone increased the viability of TM3 cells and reduced reactive oxygen species (ROS) generation in TM4 cells compared to the ATZ-treated group. In conclusion, exogenous testosterone intake maintains testicular morphometry and spermatogenesis in rats, and minimizes cell death and ROS generation in testicular cell lines exposed to ATZ. However, TM4 cells are more responsive to testosterone-mediated regulation of ROS generation induced by ATZ than TM3 cells.


Asunto(s)
Atrazina , Testosterona , Masculino , Ratas , Animales , Testosterona/farmacología , Testículo/metabolismo , Especies Reactivas de Oxígeno , Atrazina/toxicidad , Supervivencia Celular , Células Intersticiales del Testículo , Células de Sertoli/metabolismo
8.
Front Biosci (Landmark Ed) ; 28(9): 213, 2023 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-37796713

RESUMEN

BACKGROUND: Extractions of Lessertia frutescens (Lf) are shown to have immune modulation, anti-inflammatory and antioxidant properties. However, Lf is also cytotoxic, antiproliferative, and pro-apoptotic in vitro. Furthermore, Lf extractions may influence steroidogenesis. Nevertheless, the impact on Leydig cell function has not previously been investigated. As tumor necrosis factor-alpha (TNF-α) is known to cause Leydig cell dysfunction under inflammatory conditions, it is further proposed that Lf extracts may protect against the negative impact of TNF-α on Leydig cells. The aim of the study was to investigate the effect of an aqueous Lessertia frutescens extract (LFE) on Leydig cells exposed to TNF-αin vitro. METHODS: Human chorionic gonadotrophin-stimulated TM3 Leydig cells were exposed for 24 h to (a) TNF-α (0.1, 1, 10, 100 ng/mL), (b) LFE (0.01, 0.1, 1, 10, 100 ng/mL), and (c) co-exposure to 10 ng/mL TNF-α and LFE (0.01, 0.1, 1, 10, 100 ng/mL). We analyzed cell viability, cytotoxicity, caspase 3/7 activation, testosterone concentration, and intracellular superoxide. RESULTS: TNF-α exposure decreased cell viability, increased cytotoxicity, and caspase 3/7, with no significant effect on intracellular superoxide in TM3 Leydig cells. When LFE concentrations of 0.01-10 ng/mL were tested, we observed improved vitality and reduced levels of caspase 3/7. At 100 ng/mL, LFE decreased viability and increased cytotoxicity and caspase 3/7. However, LFE did not affect intracellular superoxide. Furthermore, LFE protected against 10 ng/mL TNF-α-induced cytotoxicity and apoptosis, except at the highest concentration. LFE alone and in co-culture with 10 ng/mL TNF-α increased testosterone at high concentrations. CONCLUSIONS: In our TM3 Leydig cell model, LFE protected against TNF-α-induced cytotoxicity and early apoptosis, except at the highest experimental concentrations, where it was cytotoxic. These effects were not mediated through a change in intracellular superoxide. Although further investigations are warranted, aqueous LFE may protect against TNF-α-induced Leydig cell dysfunction.


Asunto(s)
Células Intersticiales del Testículo , Factor de Necrosis Tumoral alfa , Masculino , Humanos , Células Intersticiales del Testículo/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Superóxidos , Caspasa 3 , Testosterona/farmacología
9.
Reprod Fertil ; 4(3)2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37276172

RESUMEN

Abstract: Infertility affects millions of couples worldwide. Oxidative stress (OS) causes peroxidation of lipids and damage to spermatozoa, thus, reducing the quality of seminal parameters. In addition, the differences in the levels of antioxidants and reactive oxygen species (ROS) caused by intrinsic and extrinsic variables linked to lifestyle, diet, genetics, and OS also contribute to male infertility. High levels of ROS result in sperm damage of sperm parameters due to lipid peroxidation and oxidation of proteins. Other significant causes of ROS include changes in sex hormone levels, sperm DNA damage, including mutations, and immature spermatozoa. Treating the root causes of OS, by changing one's lifestyle, as well as antioxidant therapy, may be helpful strategies to fight OS-related infertility. However, the determination of male infertility induced by OS is currently a challenge in the field of reproductive health research. This review intends to describe the role of oxidative stress on male infertility and the current understanding of its management. Lay summary: The inability to conceive affects many couples globally. Oxidative stress refers to imbalances between different oxygen species which can lead to male fertility problems by damaging sperm and semen. Oxidative stress may be caused by several factors, including diets high in fats, sugars and processed foods, lifestyle (including smoking, alcohol consumption and having a sedentary lifestyle), and genetics. Treatment that focuses on the root cause may help combat male infertility. However, there is currently no consensus on the best way to treat male fertility problems, particularly those associated with oxidative stress. This paper describes the role of oxidative stress on male infertility and discusses the current techniques employed in treating male fertility issues.


Asunto(s)
Infertilidad Masculina , Semen , Masculino , Animales , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Infertilidad Masculina/terapia , Infertilidad Masculina/genética , Infertilidad Masculina/veterinaria , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Antioxidantes/farmacología
10.
Reprod Sci ; 30(11): 3285-3295, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37264261

RESUMEN

Identifying the metabolome of human seminal plasma (HSP) is a new research area to screen putative biomarkers of infertility. This case-control study was performed on HSP specimens of 15 infertile patients with teratozoospermia (defined as normal sperm morphology < 4%) and 12 confirmed fertile normozoospermic men as the control group to investigate the seminal metabolic signature and whether there are differences in the metabolome between two groups. HSPs were subjected to LC-MS-MS analysis. MetaboAnalyst5.0 software was utilized for statistical analysis. Different univariate and multivariate analyses were used, including T-tests, fold change analysis, random forest (RF), and metabolite set enrichment analysis (MSEA). Teratozoospermic samples contained seventeen significantly different amino acids. Upregulated metabolites include glutamine, asparagine, and glycylproline, whereas downregulated metabolites include cysteine, γ-aminobutyric acid, histidine, hydroxylysine, hydroxyproline, glycine, proline, methionine, ornithine, tryptophan, aspartic acid, argininosuccinic acid, α-aminoadipic acid, and ß-aminoisobutyric acid. RF algorithm defined a set of 15 metabolites that constitute the significant features of teratozoospermia. In particular, increased glutamine, asparagine, and decreased cysteine, tryptophan, glycine, and valine were strong predictors of teratozoospemia. The most affected metabolic pathways in teratozoospermic men are the aminoacyl-tRNA, arginine, valine-leucine, and isoleucine biosynthesis. Altered metabolites detected in teratozoospermia were responsible for various roles in sperm functions that classified into four subgroups as follows: related metabolites to antioxidant function, energy production, sperm function, and spermatogenesis. The altered amino acid metabolome identified in this study may be related to the etiology of teratozoospermia, and may provide novel insight into potential biomarkers of male infertility for therapeutic targets.


Asunto(s)
Aminoácidos , Teratozoospermia , Humanos , Masculino , Aminoácidos/análisis , Aminoácidos/metabolismo , Semen/metabolismo , Teratozoospermia/metabolismo , Triptófano/análisis , Triptófano/metabolismo , Asparagina/análisis , Asparagina/metabolismo , Cromatografía Liquida , Cisteína/metabolismo , Glutamina/análisis , Glutamina/metabolismo , Estudios de Casos y Controles , Espectrometría de Masas en Tándem , Glicina/análisis , Glicina/metabolismo , Valina/análisis , Valina/metabolismo , Biomarcadores/metabolismo
11.
Sci Rep ; 13(1): 6819, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100822

RESUMEN

There are conflicting reports on trends of semen parameters from different parts of the globe. However, in recent times there is dearth of information on the trend in Sub-Saharan countries. Therefore, in this study we aimed at determining the trends in semen parameters in Nigeria and South Africa between 2010 and 2019. A retrospective study of semen analyses of 17,292 men attending fertility hospitals in Nigeria and South Africa in 2010, 2015 and 2019. Patients who had undergone vasectomy and those who had a pH less than 5 or greater than 10 were excluded from this study. The following variables were assessed: ejaculate volume, sperm concentration, progressive motility, total progressively motile sperm count (TPMSC), total sperm count, and normal sperm morphology. Between 2010 and 2019, significant trends of decreasing values were observed in normal sperm morphology (- 50%), and the ejaculatory volume (- 7.4%), indicating a progressive deterioration of the values in both countries. In Nigeria, there were significant decreases in progressive motility (- 87%), TPMSC (- 78%), and sperm morphology (- 55%) between 2010 and 2019 (P < 0.001). Spearman`s rank correlation revealed significant negative associations between age and morphology (ρ = - 0.24, P < 0.001), progressive motility (ρ = - 0.31. P < 0.001), and TPMSC (ρ = - 0.32, P < 0.001). Patients in South Africa were younger than those from Nigeria, with also a significantly higher sperm morphology, sperm concentration, progressive motility, total sperm count and TPMSC. Our findings provide a quantitative evidence of an alarming decreasing trend in semen parameters in Nigeria and South Africa from 2010 to 2019. It also proves that astheno- and teratozoospermia are the leading causes of male infertility in these regions. In addition to this, it also shows empirically that semen parameters decrease with advancement in age. These findings are the first report of temporal trends in semen parameters in Sub-Saharan countries, necessitating a thorough investigation on the underlying factors promoting this worrisome decline.


Asunto(s)
Infertilidad Masculina , Semen , Humanos , Masculino , Nigeria/epidemiología , Sudáfrica/epidemiología , Estudios Retrospectivos , Motilidad Espermática , Análisis de Semen , Recuento de Espermatozoides , Infertilidad Masculina/epidemiología , Espermatozoides
12.
World J Mens Health ; 41(3): 575-602, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37118960

RESUMEN

PURPOSE: Sperm DNA fragmentation (SDF) testing was recently added to the sixth edition of the World Health Organization laboratory manual for the examination and processing of human semen. Many conditions and risk factors have been associated with elevated SDF; therefore, it is important to identify the population of infertile men who might benefit from this test. The purpose of this study was to investigate global practices related to indications for SDF testing, compare the relevant professional society guideline recommendations, and provide expert recommendations. MATERIALS AND METHODS: Clinicians managing male infertility were invited to take part in a global online survey on SDF clinical practices. This was conducted following the CHERRIES checklist criteria. The responses were compared to professional society guideline recommendations related to SDF and the appropriate available evidence. Expert recommendations on indications for SDF testing were then formulated, and the Delphi method was used to reach consensus. RESULTS: The survey was completed by 436 experts from 55 countries. Almost 75% of respondents test for SDF in all or some men with unexplained or idiopathic infertility, 39% order it routinely in the work-up of recurrent pregnancy loss (RPL), and 62.2% investigate SDF in smokers. While 47% of reproductive urologists test SDF to support the decision for varicocele repair surgery when conventional semen parameters are normal, significantly fewer general urologists (23%; p=0.008) do the same. Nearly 70% would assess SDF before assisted reproductive technologies (ART), either always or for certain conditions. Recurrent ART failure is a common indication for SDF testing. Very few society recommendations were found regarding SDF testing. CONCLUSIONS: This article presents the largest global survey on the indications for SDF testing in infertile men, and demonstrates diverse practices. Furthermore, it highlights the paucity of professional society guideline recommendations. Expert recommendations are proposed to help guide clinicians.

13.
World J Mens Health ; 41(1): 164-197, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35791302

RESUMEN

PURPOSE: Varicocele is a common problem among infertile men. Varicocele repair (VR) is frequently performed to improve semen parameters and the chances of pregnancy. However, there is a lack of consensus about the diagnosis, indications for VR and its outcomes. The aim of this study was to explore global practice patterns on the management of varicocele in the context of male infertility. MATERIALS AND METHODS: Sixty practicing urologists/andrologists from 23 countries contributed 382 multiple-choice-questions pertaining to varicocele management. These were condensed into an online questionnaire that was forwarded to clinicians involved in male infertility management through direct invitation. The results were analyzed for disagreement and agreement in practice patterns and, compared with the latest guidelines of international professional societies (American Urological Association [AUA], American Society for Reproductive Medicine [ASRM], and European Association of Urology [EAU]), and with evidence emerging from recent systematic reviews and meta-analyses. Additionally, an expert opinion on each topic was provided based on the consensus of 16 experts in the field. RESULTS: The questionnaire was answered by 574 clinicians from 59 countries. The majority of respondents were urologists/uro-andrologists. A wide diversity of opinion was seen in every aspect of varicocele diagnosis, indications for repair, choice of technique, management of sub-clinical varicocele and the role of VR in azoospermia. A significant proportion of the responses were at odds with the recommendations of AUA, ASRM, and EAU. A large number of clinical situations were identified where no guidelines are available. CONCLUSIONS: This study is the largest global survey performed to date on the clinical management of varicocele for male infertility. It demonstrates: 1) a wide disagreement in the approach to varicocele management, 2) large gaps in the clinical practice guidelines from professional societies, and 3) the need for further studies on several aspects of varicocele management in infertile men.

14.
World J Mens Health ; 41(2): 289-310, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36326166

RESUMEN

PURPOSE: Despite the significant role of varicocele in the pathogenesis of male infertility, the impact of varicocele repair (VR) on conventional semen parameters remains controversial. Only a few systematic reviews and meta-analyses (SRMAs) have evaluated the impact of VR on sperm concentration, total motility, and progressive motility, mostly using a before-after analytic approach. No SRMA to date has evaluated the change in conventional semen parameters after VR compared to untreated controls. This study aimed to evaluate the effect of VR on conventional semen parameters in infertile patients with clinical varicocele compared to untreated controls. MATERIALS AND METHODS: A literature search was performed using Scopus, PubMed, Embase, and Cochrane databases following the Population Intervention Comparison Outcome (PICOS) model (Population: infertile patients with clinical varicocele; Intervention: VR [any technique]; Comparison: infertile patients with clinical varicocele that were untreated; Outcome: sperm concentration, sperm total count, progressive sperm motility, total sperm motility, sperm morphology, and semen volume; Study type: randomized controlled trials and observational studies). RESULTS: A total of 1,632 abstracts were initially assessed for eligibility. Sixteen studies were finally included with a total of 2,420 infertile men with clinical varicocele (1,424 patients treated with VR vs. 996 untreated controls). The analysis showed significantly improved post-operative semen parameters in patients compared to controls with regards to sperm concentration (standardized mean difference [SMD] 1.739; 95% CI 1.129 to 2.349; p<0.001; I²=97.6%), total sperm count (SMD 1.894; 95% CI 0.566 to 3.222; p<0.05; I²=97.8%), progressive sperm motility (SMD 3.301; 95% CI 2.164 to 4.437; p<0.01; I²=98.5%), total sperm motility (SMD 0.887; 95% CI 0.036 to 1.738; p=0.04; I²=97.3%) and normal sperm morphology (SMD 1.673; 95% CI 0.876 to 2.470; p<0.05; I²=98.5%). All the outcomes showed a high inter-study heterogeneity, but the sensitivity analysis showed that no study was sensitive enough to change these results. Publication bias was present only in the analysis of the sperm concentration and progressive motility. No significant difference was found for the semen volume (SMD 0.313; 95% CI -0.242 to 0.868; I²=89.7%). CONCLUSIONS: This study provides a high level of evidence in favor of a positive effect of VR to improve conventional semen parameters in infertile men with clinical varicocele. To the best of our knowledge, this is the first SRMA to compare changes in conventional semen parameters after VR with changes in parameters of a control group over the same period. This is in contrast to other SRMAs which have compared semen parameters before and after VR, without reference to a control group. Our findings strengthen the available evidence and have a potential to upgrade professional societies' practice recommendations favoring VR to improve conventional semen parameters in infertile men.

15.
J Reprod Infertil ; 24(4): 257-268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38164434

RESUMEN

Background: Male infertility is usually determined by the manual evaluation of the semen, namely the standard semen analysis. It is currently impossible to predict sperm fertilizing ability based on the semen analysis alone. Therefore, a more sensitive and selective diagnosis tool is required. Methods: Twelve fresh semen samples were collected from fertile volunteers attending the Avicenna Fertility Center (Tehran, Iran). The seminal plasma (SP) was prepared and subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the total antioxidant capacity (TAC) was analysis. Thirty-four amino acids including essential amino acids (EAA), non-essential amino acids (NEAA), and non-proteinogenic amino acids (NPAA) relative concentration were determined, and the correlation between their concentration with spermiogram parameters and TAC of the SP was analyzed. Results: Significant positive correlations have been found between selected amino acids with the motility (Met and Gln, rs=0.92; Cys, rs=0.72; and Asn, rs=0.82), normal sperm morphology (Met, rs=0.92; Cys, rs=0.72; Glu, rs=0.92; and Asn, rs=0.82), and sperm concentration (Trp, Phe, and Ala). In contrast, several AAs, including Gly, Ser, and Ile showed negative correlations with sperm concentration (rs=-0.93, r=-0.92, and r=-0.89, respectively). Furthermore, TAC showed a positive association only with Tyr (rs=0.79). Conclusion: The strong positive/negative correlations between the seminal metabolic signature and spermiogram demonstrate the significance of determining metabolite levels under normal conditions for normal sperm functions. Combining the metabolome with the clinical characteristics of semen would enable clinicians to look beyond biomarkers toward the clinical interpretation of seminal parameters to explain the biological basis of sperm pathology.

16.
Adv Exp Med Biol ; 1391: 333-340, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36472831

RESUMEN

Infertility is a globally under-recognized public health problem significantly impacting individual health and socioeconomics affecting millions of couples. The reasons for infertility are manifold and not only include many couples decision to postpone having children but also diseases (e.g., diabetes, infections, or varicocele), lifestyle (e.g., obesity), and environmental factors (e.g., bisphenol A, DTT or dioxin). In the pathology of many causes of infertility, oxidative stress plays a significant role as reactive oxygen species (ROS) exert significant detrimental effects. On the other hand, a small amount of ROS is essential to trigger physiological events such as capacitation. Therefore, a fine balance between oxidation and reduction has to be maintained. Apart from treating the underlying disease or correcting the cause of the infertility, oxidative stress can be treated by antioxidant supplementation. Since plants and their extracts contain numerous phytochemicals which exhibit antioxidant activity, many people tend to use herbal products. Alternatively, isolated antioxidants such as vitamin C or E are also used. However, when using purified antioxidants, it is essential that the redox balance is maintained to avoid a "reductive stress" situation, which is as harmful as oxidative stress.


Asunto(s)
Infertilidad Masculina , Niño , Humanos , Masculino , Estrés Oxidativo
17.
Andrologia ; 54(10): e14556, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36177795

RESUMEN

This study aims to evaluate the expression of genes associated with the fertilisation potential and embryo development, sperm DNA fragmentation (SDF), and acrosome reaction in male partners of infertile couples with different sperm parameters compared to fertile men. First, male partners of infertile couples with abnormal (N = 25) and normal sperm parameters (N = 25), and fertile men (N = 10) were included in experimental groups I, II, and controls respectively. The mRNA levels of the Annexin A2 (ANXA2), Sperm protein 17 (SP17), Plasma serine protease inhibitor (SERPINA5), and Peroxiredoxin-2 (PRDX2) genes and SDF were evaluated. To evaluate the maturity of the sperm and oxidative stress, the acrosome reaction, the lipid peroxidation, and total antioxidant were measured. As result, SP17 showed a significantly lower expression in both experimental groups. SERPINA5 was significantly down-regulated in experimental group I that was aligned with the low rate of acrosome reaction. Significant overexpression of PRDX2 was found between experimental group II and controls. Significant higher rates of SDF were seen in both experimental groups compared to the controls. Finally, our data suggest that differentially gene expression of SP17 is a potential diagnostic biomarker in infertile men either with normal or abnormal sperm parameters. SDF is one of the causes of male infertility, independent of the sperm parameters.


Asunto(s)
Anexina A2 , Proteínas de Unión a Calmodulina , Infertilidad Masculina , Proteínas de la Membrana , Peroxirredoxinas , Inhibidor de Proteína C , Anexina A2/genética , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Proteínas de Unión a Calmodulina/genética , Fragmentación del ADN , Humanos , Infertilidad Masculina/etiología , Masculino , Proteínas de la Membrana/genética , Peroxirredoxinas/genética , Inhibidor de Proteína C/genética , ARN Mensajero/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo
18.
Hum Reprod ; 37(11): 2497-2502, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36112046

RESUMEN

Biomedical science is rapidly developing in terms of more transparency, openness and reproducibility of scientific publications. This is even more important for all studies that are based on results from basic semen examination. Recently two concordant documents have been published: the 6th edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen, and the International Standard ISO 23162:2021. With these tools, we propose that authors should be instructed to follow these laboratory methods in order to publish studies in peer-reviewed journals, preferable by using a checklist as suggested in an Appendix to this article.


Asunto(s)
Análisis de Semen , Semen , Humanos , Reproducibilidad de los Resultados , Análisis de Semen/métodos , Revisión por Pares , Edición
19.
Reprod Biomed Online ; 45(5): 1007-1020, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36055912

RESUMEN

RESEARCH QUESTION: Is seminal oxidation-reduction potential (ORP) clinically relevant to reproductive outcome? DESIGN: Prospective observational study including a total of 144 couples who had an intracytoplasmic sperm injection (ICSI) cycle between June 2018 and December 2020. The study included patients undergoing fresh ICSI cycles with autologous gametes. Cycles that had day 3 embryo transfers and cryopreservation cycles were excluded. There was no restriction on patients with severe male infertility; couples with unexplained infertility and unexplained male infertility were included, those with azoospermia were excluded. Semen analysis, seminal ORP as determined by means of the MiOXSYS system, sperm DNA fragmentation (SDF) and reproductive outcomes (fertilization, blastocyst development, clinical pregnancy and live birth) were determined. RESULTS: Seminal ORP was significantly negatively correlated with fertilization rate (r = -0.267; P = 0.0012), blastocyst development rate (r = -0.432; P < 0.0001), implantation/clinical pregnancy (r = -0.305; P = 0.0003) and live birth (r = -0.366; P < 0.0001). Receiver operating characteristic curve analysis showed significant predictive power for ORP for fertilization (≥80%; area under the curve [AUC] 0.652; P = 0.0012), blastocyst development rate (≥60%; AUC 0.794; P < 0.0001), implantation/clinical pregnancy (AUC 0.680; P = 0.0002) and live birth (AUC 0.728; P < 0.0001). Comparable results were obtained for SDF (fertilization: AUC 0.678; blastocyst development: AUC 0.777; implantation/clinical pregnancy: AUC 0.665; live birth: AUC 0.723). Normal sperm morphology showed the lowest predictive power for all reproductive outcome parameters. With male age as confounding factor, ORP (cut-off value of 0.51 mV/106 sperm/ml) has significant (P < 0.04667) effects on odds ratios for all reproductive outcome parameters. Multivariate logistic regression to investigate potential seminal and female confounding factors revealed that seminal ORP significantly (P < 0.0039; P < 0.0130) affects reproductive outcome. CONCLUSION: Seminal ORP is relevant for good fertilization, blastocyst development, implantation, clinical pregnancy and live birth.


Asunto(s)
Infertilidad Masculina , Inyecciones de Esperma Intracitoplasmáticas , Embarazo , Masculino , Humanos , Femenino , Índice de Embarazo , Fertilización In Vitro , Tasa de Natalidad , Semen , Nacimiento Vivo , Infertilidad Masculina/terapia , Oxidación-Reducción , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA