RESUMEN
A vexing problem in mitochondrial medicine is our limited capacity to evaluate the extent of brain disease in vivo. This limitation has hindered our understanding of the mechanisms that underlie the imaging phenotype in the brain of patients with mitochondrial diseases and our capacity to identify new biomarkers and therapeutic targets. Using comprehensive imaging, we analyzed the metabolic network that drives the brain structural and metabolic features of a mouse model of pyruvate dehydrogenase deficiency (PDHD). As the disease progressed in this animal, in vivo brain glucose uptake and glycolysis increased. Propionate served as a major anaplerotic substrate, predominantly metabolized by glial cells. A combination of propionate and a ketogenic diet extended lifespan, improved neuropathology, and ameliorated motor deficits in these animals. Together, intermediary metabolism is quite distinct in the PDHD brain-it plays a key role in the imaging phenotype, and it may uncover new treatments for this condition.
Asunto(s)
Encéfalo , Glucosa , Propionatos , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa , Animales , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Glucosa/metabolismo , Propionatos/metabolismo , Ratones , Dieta Cetogénica , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Masculino , GlucólisisRESUMEN
[212Pb]VMT01 is a melanocortin 1 receptor (MC1R) targeted theranostic ligand in clinical development for alpha particle therapy for melanoma. 212Pb has an elementally matched gamma-emitting isotope 203Pb; thus, [203Pb]VMT01 can be used as an imaging surrogate for [212Pb]VMT01. [212Pb]VMT01 human serum stability studies have demonstrated retention of the 212Bi daughter within the chelator following beta emission of parent 212Pb. However, the subsequent alpha emission from the decay of 212Bi into 208Tl results in the generation of free 208Tl. Due to the 10.64-hour half-life of 212Pb, accumulation of free 208Tl in the injectate will occur. The goal of this work is to estimate the human dosimetry for [212Pb]VMT01 and the impact of free 208Tl in the injectate on human tissue absorbed doses. Human [212Pb]VMT01 tissue absorbed doses were estimated from murine [203Pb]VMT01 biodistribution data, and human biodistribution values for 201Tl chloride (a cardiac imaging agent) from published data were used to estimate the dosimetry of free 208Tl. Results indicate that the dose-limiting tissues for [212Pb]VMT01 are the red marrow and the kidneys, with estimated absorbed doses of 1.06 and 8.27 mGyRBE = 5/MBq. The estimated percent increase in absorbed doses from free 208Tl in the injectate is 0.03% and 0.09% to the red marrow and the kidneys, respectively. Absorbed doses from free 208Tl result in a percent increase of no more than 1.2% over [212Pb]VMT01 in any organ or tissue. This latter finding indicates that free 208Tl in the [212Pb]VMT01 injectate will not substantially impact estimated tissue absorbed doses in humans.
Asunto(s)
Melanoma , Receptor de Melanocortina Tipo 1 , Animales , Quelantes , Cloruros , Humanos , Plomo , Ligandos , Ratones , Radioisótopos de Talio , Distribución TisularRESUMEN
Mentorship is a fundamental aspect that contributes to the success of a career in science, technology, engineering, and mathematics (STEM), particularly in academia. Research suggests that underrepresented minorities (URMs) often experience less quality mentorship and face barriers to finding successful mentor-mentee relationships. URM trainees in STEM face challenges that are not encountered by their majority peers or mentors, adding another level of complexity to establishing important relationships. Mentors of URM trainees must therefore mentor beyond general scientific training and tailor their mentorship to be more culturally appropriate and inclusive, allowing URM trainees to bring their whole selves to the table and leading to their effective socialization. Herein, we present the perspectives of group leaders and trainees from around the globe to highlight key aspects of creating successful mentor-mentee relationships that are sustainable and productive for both parties.
Asunto(s)
Ingeniería , Mentores , Humanos , TecnologíaRESUMEN
Antibody-based PET (immunoPET) with radiotracers that recognize specific cells of the immune system provides an opportunity to monitor immune cell trafficking at the organismal scale. We previously reported the visualization of human CD8+ T cells, including CD8+ tumor-infiltrating lymphocytes (TIL), in mice using a humanized CD8-targeted minibody. Given the important role of CD4+ T cells in adaptive immune responses of health and disease including infections, tumors, and autoimmunity, we explored immunoPET using an anti-human-CD4 minibody. We assessed the ability of [64Cu]Cu-NOTA-IAB41 to bind to various CD4+ T-cell subsets in vitro. We also determined the effect of the CD4-targeted minibody on CD4+ T-cell abundance, proliferation, and activation state in vitro. We subsequently evaluated the ability of the radiotracer to visualize CD4+ T cells in T-cell rich organs and orthotopic brain tumors in vivo. For the latter, we injected the [64Cu]Cu-NOTA-IAB41 radiotracer into humanized mice that harbored intracranial patient-derived glioblastoma (GBM) xenografts and performed in vivo PET, ex vivo autoradiography, and anti-CD4 IHC on serial brain sections. [64Cu]Cu-NOTA-IAB41 specifically detects human CD4+ T cells without impacting their abundance, proliferation, and activation. In humanized mice, [64Cu]Cu-NOTA-IAB41 can visualize various peripheral tissues in addition to orthotopically implanted GBM tumors. [64Cu]Cu-NOTA-IAB41 is able to visualize human CD4+ T cells in humanized mice and can provide noninvasive quantification of CD4+ T-cell distribution on the organismal scale.
Asunto(s)
Linfocitos T CD4-Positivos , Radioisótopos de Cobre , Animales , Línea Celular Tumoral , Humanos , Ratones , Tomografía de Emisión de Positrones/métodosRESUMEN
Racial, ethnic, and gender representation in an academic setting means that teachers, professors, and other leaders reflect the demographics of the student body in the educational and professional spaces that they serve. This form of representation, which is often intersectional, strengthens communities and improves student outcomes, from as early as primary and secondary education, through to college education and beyond. Representation matters because it can shape the reputation and self-image of women and Black, Indigenous, and People of Color (BIPOC) within environments dominated by over-represented majorities (ORMs). From the perspective of BIPOC women trainees, the lack of BIPOC faculty who are visible minorities, particularly at the most senior level positions, often conjures questions of whether academia is a realistic career path for aspiring minority students. This article focuses on the key component of representation in the United States (U.S.), highlighting our vision for a solution for the so-called "leaky pipeline" for BIPOC in science, technology, engineering, and mathematic with action items to end it.
Asunto(s)
Ingeniería , Grupos Minoritarios , Femenino , Humanos , Estados UnidosRESUMEN
PURPOSE: Abnormal Notch signaling promotes cancer cell growth and tumor progression in various cancers. Targeting γ-secretase, a pivotal regulator in the Notch pathway, has yielded numerous γ-secretase inhibitors (GSIs) for clinical investigation in the last 2 decades. However, GSIs have demonstrated minimal success in clinical trials in part due to the lack of specific and precise tools to assess γ-secretase activity and its inhibition in vivo. EXPERIMENTAL DESIGN: We designed an imaging probe based on GSI Semagacestat structure and synthesized the radioiodine-labeled analogues [131I]- or [124I]-PN67 from corresponding trimethyl-tin precursors. Both membrane- and cell-based ligand-binding assays were performed using [131I]-PN67 to determine the binding affinity and specificity for γ-secretase in vitro. Moreover, we evaluated [124I]-PN67 by PET imaging in mammary tumor and glioblastoma mouse models. RESULTS: The probe was synthesized through iodo-destannylation using chloramine-T as an oxidant with a high labeling yield and efficiency. In vitro binding results demonstrate the high specificity of this probe and its ability for target replacement study by clinical GSIs. PET imaging studies demonstrated a significant (P < 0.05) increased in the uptake of [124I]-PN67 in tumors versus blocking or sham control groups across multiple mouse models, including 4T1 allograft, MMTV-PyMT breast cancer, and U87 glioblastoma allograft. Ex vivo biodistribution and autoradiography corroborate these results, indicating γ-secretase specific tumor accumulation of [124I]-PN67. CONCLUSIONS: [124I]-PN67 is a novel PET imaging agent that enables assessment of γ-secretase activity and target engagement of clinical GSIs.
Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Neoplasias de la Mama , Animales , Neoplasias de la Mama/patología , Femenino , Humanos , Radioisótopos de Yodo , Ratones , Tomografía de Emisión de Positrones , Receptores Notch/metabolismo , Distribución TisularRESUMEN
Patients with pancreatic ductal adenocarcinoma (PDAC) do not benefit from immune checkpoint blockade (ICB) along the PD-1/PD-L1 axis. Variable PD-L1 expression in PDAC indicates a potential access issue of PD-L1-targeted therapy. To monitor target engagement of PD-L1-targeted therapy, we generated a PD-L1-targeted PET tracer labeled with zirconium-89 (89Zr). As the MAPK signaling pathway (MEK and ERK) is known to modulate PD-L1 expression in other tumor types, we used [89Zr]Zr-DFO-anti-PD-L1 as a tool to noninvasively assess whether manipulation of the MAPK signaling cascade could be leveraged to modulate PD-L1 expression and thereby immunotherapeutic outcomes in PDAC. In this study, we observed that the inhibition of MEK or ERK is sufficient to increase PD-L1 expression, which we hypothesized could be leveraged for anti-PD-L1 immune checkpoint therapy. We found that the combination of ERK inhibition and anti-PD-L1 therapy corresponded with a significant improvement of overall survival in a syngeneic mouse model of PDAC. Furthermore, IHC analysis indicates that the survival benefit may be CD8+ T-cell mediated. The therapeutic and molecular imaging tool kit developed could be exploited to better structure clinical trials and address the therapeutic gaps in challenging malignancies such as PDAC.
Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Carcinoma Ductal Pancreático/tratamiento farmacológico , Sinergismo Farmacológico , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Animales , Apoptosis , Antígeno B7-H1/inmunología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Proliferación Celular , Quimioterapia Combinada , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias PancreáticasRESUMEN
Pancreatic cancer (PC) remains the fourth leading cause of cancer death; therefore, there is a clinically unmet need for novel therapeutics and diagnostic markers to treat this devastating disease. Physicians often rely on biopsy or CT for diagnosis, but more specific protein biomarkers are highly desired to assess the stage and severity of PC in a noninvasive manner. Serum biomarkers such as carbohydrate antigen 19-9 are of particular interest as they are commonly elevated in PC but have exhibited suboptimal performance in the clinic. MUC5AC has emerged as a useful serum biomarker that is specific for PC versus inflammation. We developed RA96, an anti-MUC5AC antibody, to gauge its utility in PC diagnosis through immunohistochemical analysis and whole-body PET in PC. Methods: In this study, extensive biochemical characterization determined MUC5AC as the antigen for RA96. We then determined the utility of RA96 for MUC5AC immunohistochemistry on clinical PC and preclinical PC. Finally, we radiolabeled RA96 with 89Zr to assess its application as a whole-body PET radiotracer for MUC5AC quantification in PC. Results: Immunohistochemical staining with RA96 distinguished chronic pancreatitis, pancreatic intraepithelial neoplasia, and varying grades of pancreatic ductal adenocarcinoma in clinical samples. 89Zr-desferrioxamine-RA96 was able to detect MUC5AC with high specificity in mice bearing capan-2 xenografts. Conclusion: Our study demonstrated that RA96 can differentiate between inflammation and PC, improving the fidelity of PC diagnosis. Our immuno-PET tracer 89Zr-desferrioxamine-RA96 shows specific detection of MUC5AC-positive tumors in vivo, highlighting the utility of MUC5AC targeting for diagnosis of PC.
Asunto(s)
Neoplasias Pancreáticas , Biomarcadores de Tumor , Antígeno CA-19-9 , Inmunohistoquímica , Neoplasias PancreáticasRESUMEN
Recent events in America in 2020 have stimulated a worldwide movement to dismantle anti-Black racism in all facets of our lives. Anti-Black racism is, as defined by the Movement for Black Lives, a "term used to specifically describe the unique discrimination, violence, and harm imposed on and impacting Black people specifically." In science, technology, engineering, and mathematics (STEM), we have yet to achieve the goal and responsibility to ensure that the field reflects the diversity of our lived experiences. Members of the Women in Molecular Imaging Network (WIMIN) have come together to take a stand on diversity, equity, and inclusion in the field of molecular imaging. We strongly condemn oppression in all its forms and strive to identify and dismantle barriers that lead to inequities in the molecular imaging community and STEM as a whole. In this series coined "Visions" (Antiracism and Allyship in Action), we identify and discuss specific actionable items for improving diversity and representation in molecular imaging and ensuring inclusion of all members of the community, inclusive of race, disability, ethnicity, religion, or LGBTQ+ identity. Although the issues highlighted here extend to other under-recruited and equity-seeking groups, for this first article, we are focusing on one egregious and persistent form of discrimination: anti-Black racism. In this special article, Black women residing in America present their lived experiences in the molecular imaging field and give candid insights into the challenges, frustrations, and hopes of our Black friends and colleagues. While this special article focuses on the experiences of Black women, we would like the readers to reflect on their anti-Blackness toward men, transgender, nonbinary, and gender non-conforming people. From the vulnerability we have asked of all our participants, these stories are meant to inspire and invoke active antiracist work among the readership. We present strategies for dismantling systemic racism that research centers and universities can implement in the recruitment, retention, mentorship, and development of Black trainees and professionals. We would like to specifically acknowledge the Black women who took the time to be interviewed, write perspectives, and share their lived experiences in hopes that it will inspire genuine and lasting change.
Asunto(s)
Imagen Molecular , Racismo , Racismo Sistemático , Negro o Afroamericano , Selección de Profesión , Conducta Cooperativa , Diversidad Cultural , Ingeniería , Femenino , Humanos , Masculino , Estados UnidosRESUMEN
PURPOSE: Glioblastoma (GBM) is the most common malignant brain tumor in adults. Various immunotherapeutic approaches to improve patient survival are being developed, but the molecular mechanisms of immunotherapy resistance are currently unknown. Here, we explored the ability of a humanized radiolabeled CD8-targeted minibody to noninvasively quantify tumor-infiltrating CD8-positive (CD8+) T cells using PET. EXPERIMENTAL DESIGN: We generated a peripheral blood mononuclear cell (PBMC) humanized immune system (HIS) mouse model and quantified the absolute number of CD8+ T cells by flow cytometry relative to the [64Cu]Cu-NOTA-anti-CD8 PET signal. To evaluate a patient-derived orthotopic GBM HIS model, we intracranially injected cells into NOG mice, humanized cohorts with multiple HLA-matched PBMC donors, and quantified CD8+ tumor-infiltrating lymphocytes by IHC. To determine whether [64Cu]Cu-NOTA-anti-CD8 images brain parenchymal T-cell infiltrate in GBM tumors, we performed PET and autoradiography and subsequently stained serial sections of brain tumor tissue by IHC for CD8+ T cells. RESULTS: Nontumor-bearing NOG mice injected with human PBMCs showed prominent [64Cu]Cu-NOTA-anti-CD8 uptake in the spleen and minimal radiotracer localization to the normal brain. NOG mice harboring intracranial human GBMs yielded high-resolution PET images of tumor-infiltrating CD8+ T cells. Radiotracer retention correlated with CD8+ T-cell numbers in spleen and tumor tissue. Our study demonstrates the ability of [64Cu]Cu-NOTA-anti-CD8 PET to quantify peripheral and tumor-infiltrating CD8+ T cells in brain tumors. CONCLUSIONS: Human CD8+ T cells infiltrate an orthotopic GBM in a donor-dependent manner. Furthermore, [64Cu]Cu-NOTA-anti-CD8 quantitatively images both peripheral and brain parenchymal human CD8+ T cells.
Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Antígenos CD8/inmunología , Linfocitos T CD8-positivos/metabolismo , Glioblastoma/diagnóstico por imagen , Compuestos Heterocíclicos con 1 Anillo/farmacocinética , Linfocitos Infiltrantes de Tumor/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Animales , Neoplasias Encefálicas/inmunología , Radioisótopos de Cobre , Femenino , Glioblastoma/inmunología , Humanos , Marcaje Isotópico , RatonesRESUMEN
Over the last three decades, the chemistry of zirconium has facilitated antibody development and the clinical management of disease in the precision medicine era. Scientists have harnessed its reactivity, coordination chemistry, and nuclear chemistry to develop antibody-based radiopharmaceuticals incorporating zirconium-89 (89Zr: t1/2 = 78.4 h, ß+: 22.8%, Eß+max = 901 keV; EC: 77%, Eγ = 909 keV) to improve disease detection, identify patients for individualized therapeutic interventions. and monitor their response to those interventions. However, release of the 89Zr4+ ion from the radiopharmaceutical remains a concern, since it may confound the interpretation of clinical imaging data, negatively affect dosimetric calculations, and hinder treatment planning. In this report, we relate our novel observations involving the use of polyazamacrocycles as zirconium-89 chelators. We describe the synthesis and complete characterization of zirconium 2,2',2â³,2â´-(1,4,7,10-tetraazacyclotridecane-1,4,7,10-tetrayl)tetraacetic acid (Zr-TRITA), zirconium 3,6,9,15-Tetraazabicyclo[9.3.1] pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (Zr-PCTA), and zirconium 2,2',2â³-(1,4,7-triazacyclononane-1,4,7-triyl)triacetic acid (Zr-NOTA). In addition, we elucidate the solid-state structure of each complex using single-crystal X-ray diffraction analysis. Finally, we found that [89Zr]Zr-PCTA and [89Zr]Zr-NOTA demonstrate excellent stability in vitro and in vivo and provide a rationale for these observations. These innovative findings have the potential to guide the development of safer and more robust immuno-PET agents to improve precision medicine applications.
RESUMEN
Acidosis is a key driver for many diseases, including cancer, sepsis, and stroke. The spatiotemporal dynamics of dysregulated pH across disease remain elusive, and current diagnostic strategies do not provide localization of pH alterations. We sought to explore if PET imaging using hydrophobic cyclic peptides that partition into the cellular membrane at low extracellular pH (denoted as pH [low] insertion cycles, or pHLIC) can permit accurate in vivo visualization of acidosis. Methods: Acid-sensitive cyclic peptide c[E4W5C] pHLIC was conjugated to bifunctional maleimide-NO2A and radiolabeled with 64Cu (half-life, 12.7 h). C57BL/6J mice were administered lipopolysaccharide (15 mg/kg) or saline (vehicle) and serially imaged with [64Cu]Cu-c[E4W5C] over 24 h. Ex vivo autoradiography was performed on resected brain slices and subsequently stained with cresyl violet to enable high-resolution spatial analysis of tracer accumulation. A non-pH-sensitive cell-penetrating control peptide (c[R4W5C]) was used to confirm specificity of [64Cu]Cu-c[E4W5C]. CD11b (macrophage/microglia) and TMEM119 (microglia) immunostaining was performed to correlate extent of neuroinflammation with [64Cu]Cu-c[E4W5C] PET signal. Results: [64Cu]Cu-c[E4W5C] radiochemical yield and purity were more than 95% and more than 99%, respectively, with molar activity of more than 0.925 MBq/nmol. Significantly increased [64Cu]Cu-c[E4W5C] uptake was observed in lipopolysaccharide-treated mice (vs. vehicle) within peripheral tissues, including blood, lungs, liver, and small intestines (P < 0.001-0.05). Additionally, there was significantly increased [64Cu]Cu-c[E4W5C] uptake in the brains of lipopolysaccharide-treated animals. Autoradiography confirmed increased uptake in the cerebellum, cortex, hippocampus, striatum, and hypothalamus of lipopolysaccharide-treated mice (vs. vehicle). Immunohistochemical analysis revealed microglial or macrophage infiltration, suggesting activation in brain regions containing increased tracer uptake. [64Cu]Cu-c[R4W5C] demonstrated significantly reduced uptake in the brain and periphery of lipopolysaccharide mice compared with the acid-mediated [64Cu]Cu-c[E4W5C] tracer. Conclusion: Here, we demonstrate that a pH-sensitive PET tracer specifically detects acidosis in regions associated with sepsis-driven proinflammatory responses. This study suggests that [64Cu]Cu-pHLIC is a valuable tool to noninvasively assess acidosis associated with both central and peripheral innate immune activation.
Asunto(s)
Acidosis/complicaciones , Acidosis/diagnóstico por imagen , Péptidos Cíclicos , Sepsis/complicaciones , Animales , Femenino , Concentración de Iones de Hidrógeno , Marcaje Isotópico , Ratones , Ratones Endogámicos C57BL , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacocinética , Tomografía Computarizada por Tomografía de Emisión de Positrones , Distribución TisularRESUMEN
PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly cancers, with a 5-year survival rate of less than 10%. Physicians often rely on biopsy or CT to guide treatment decisions, but these techniques fail to reliably measure the actions of therapeutic agents in PDAC. KRAS mutations are present in >90% of PDAC and are connected to many signaling pathways through its oncogenic cascade, including extracellular regulated kinase (ERK) and MYC. A key downstream event of MYC is transferrin receptor (TfR), which has been identified as a biomarker for cancer therapeutics and imaging. EXPERIMENTAL DESIGN: In this study, we aimed to test whether zirconium-89 transferrin ([89Zr]Zr-Tf) could measure changes in MYC depending on KRAS status of PDAC, and assess target engagement of anti-MYC and anti-ERK-targeted therapies. RESULTS: Mice bearing iKras*p53* tumors showed significantly higher (P < 0.05) uptake of [89Zr]Zr-Tf in mice withdrawn from inducible oncogenic KRAS. A therapy study with JQ1 showed a statistically significant decrease (P < 0.05) of [89Zr]Zr-Tf uptake in drug versus vehicle-treated mice bearing Capan-2 and Suit-2 xenografts. IHC analysis of resected PDAC tumors reflects the data observed via PET imaging and radiotracer biodistribution. CONCLUSIONS: Our study demonstrates that [89Zr]Zr-Tf is a valuable tool to noninvasively assess oncogene status and target engagement of small-molecule inhibitors downstream of oncogenic KRAS, allowing a quantitative assessment of drug delivery.
Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Tomografía de Emisión de Positrones , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Ratones , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/genética , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/genética , Radioisótopos/química , Radioisótopos/farmacología , Transducción de Señal/efectos de los fármacos , Transferrina/química , Transferrina/farmacología , Circonio/química , Circonio/farmacologíaRESUMEN
Increased expression of the human epidermal growth factor receptor (HER) protein family are targets in breast cancer for imaging and therapy. Imaging modalities targeting HER2 and HER3 can diagnose breast cancer with a specific, biologically relevant target. Repeat biopsies do not address heterogeneity intratumorally or between primary disease and metastasis. HER2- and HER3-targeted PET is an important tool to diagnose disease in breast cancer and evaluate response to targeted therapies. PET and single photon emission computed tomography with radiolabeled biomolecules can be used to detect and quantify specific targets, conferring a better understanding of the behavior and effectiveness of treatments.
Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/genética , Tomografía de Emisión de Positrones/métodos , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Tomografía Computarizada de Emisión de Fotón Único/métodos , Mama/diagnóstico por imagen , Femenino , HumanosRESUMEN
The Human Epidermal Growth Factor Receptor (ErbB/HER) family - EGFR/HER1, ErbB-2/HER2, ErbB-3/HER3, and ErbB-4/HER4 - play a key role in tumor development. Moreover, positive status of HER2 and specific mutations of EGFR are necessary to initiate HER2 directed and EGFR mutation directed therapies. The status of these receptors is usually determined by assaying biopsy specimens of tumor tissues; however, tissue samples are insufficient to account for the complex dynamics and heterogeneity involved in HER status. Molecular imaging of receptors of the HER family have undergone much development, and some show promise for facilitating patient selection for HER therapy and monitoring of treatment response. This review provides a general overview of HER family expression and signaling in tumor tissue and more importantly discusses the available EGFR, HER2 and HER3 molecular imaging modalities, highlighting their use not only for selecting patients for receptor-targeted therapy, but also for monitoring therapeutic response. Additionally, the design and the biological evaluation of HER-specific imaging probes using different cancer models and clinical data are discussed.
Asunto(s)
Diagnóstico por Imagen/métodos , Receptores ErbB/metabolismo , Neoplasias/diagnóstico por imagen , Selección de Paciente , Humanos , Neoplasias/metabolismo , Neoplasias/terapia , Tomografía de Emisión de Positrones/métodos , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Receptor ErbB-4/metabolismo , Tomografía Computarizada de Emisión de Fotón Único/métodosRESUMEN
The current standard for breast PET imaging is 18F-FDG. The heterogeneity of 18F-FDG uptake in breast cancer limits its utility, varying greatly among receptor status, histopathologic subtypes, and proliferation markers. 18F-FDG PET often exhibits nonspecific internalization and low specificity and sensitivity, especially with tumors smaller than 1 cm3 MYC is a protein involved in oncogenesis and is overexpressed in triple-negative breast cancer (TNBC). Increased surface expression of transferrin receptor (TfR) is a downstream event of MYC upregulation and has been validated as a clinically relevant target for molecular imaging. Transferrin labeled with 89Zr has successfully identified MYC status in many cancer subtypes preclinically and been shown to predict response and changes in oncogene status via treatment with small-molecule inhibitors that target MYC and PI3K signaling pathways. We hypothesized that 89Zr-transferrin PET will noninvasively detect MYC and TfR and improve upon the current standard of 18F-FDG PET for MYC-overexpressing TNBC. Methods: In this study, 89Zr-transferrin and 18F-FDG imaging were compared in preclinical models of TNBC. TNBC cells (MDA-MB-157, MDA-MB-231, and Hs578T) were treated with bromodomain-containing protein 4 (BRD4) inhibitors JQ1 and OTX015 (0.5-1 µM). Cell proliferation, gene expression, and protein expression were assayed to explore the effects of these inhibitors on MYC and TfR. Results: Head-to-head comparison showed that 89Zr-transferrin targets TNBC tumors significantly better (P < 0.05-0.001) than 18F-FDG through PET imaging and biodistribution studies in MDA-MB-231 and MDA-MB-157 xenografts and a patient-derived xenograft model of TNBC. c-Myc and TfR gene expression was decreased upon treatment with BRD4 inhibitors and c-MYC small interfering RNA (P < 0.01-0.001 for responding cell lines), compared with vehicle treatment. MYC and TfR protein expression, along with receptor-mediated internalization of transferrin, was also significantly decreased upon drug treatment in MDA-MB-231 and MDA-MB-157 cells (P < 0.01-0.001). Conclusion:89Zr-transferrin targets human TNBC primary tumors significantly better than 18F-FDG, as shown through PET imaging and biodistribution studies. 89Zr-transferrin is a useful tool to interrogate MYC via TfR-targeted PET imaging in TNBC.
Asunto(s)
Fluorodesoxiglucosa F18 , Regulación Neoplásica de la Expresión Génica , Tomografía de Emisión de Positrones/métodos , Proteínas Proto-Oncogénicas c-myc/genética , Radioisótopos , Transferrina , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Circonio , Animales , Transporte Biológico , Línea Celular Tumoral , Transformación Celular Neoplásica , Femenino , Fluorodesoxiglucosa F18/metabolismo , Humanos , Ratones , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
Increased human epidermal growth factor receptor 2 (HER2) expression is a hallmark of aggressive breast cancer. Imaging modalities have the potential to diagnose HER2-positive breast cancer and detect distant metastases. The heterogeneity of HER2 expression between primary and metastatic disease sites limits the value of tumor biopsies. Molecular imaging is a noninvasive tool to assess HER2-positive primary lesions and metastases. Radiolabeled antibodies, antibody fragments, and affibody molecules devise a reliable and quantitative method for detecting HER2-positive cancer using PET. HER2-targeted PET imaging is a valuable clinical tool with respect to both the care and maintenance of patients with breast cancer.
Asunto(s)
Neoplasias de la Mama/química , Neoplasias de la Mama/diagnóstico por imagen , Receptor ErbB-2/análisis , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Pronóstico , Cintigrafía/métodos , Radiofármacos , Tomografía Computarizada por Rayos XRESUMEN
Vitamin B12 -peptide conjugates have considerable therapeutic potential through improved pharmacokinetic and/or pharmacodynamic properties imparted on the peptide upon covalent attachment to vitamin B12 (B12 ). There remains a lack of structural studies investigating the effects of B12 conjugation on peptide secondary structure. Determining the solution structure of a B12 -peptide conjugate or conjugates and measuring functions of the conjugate(s) at the target peptide receptor may offer considerable insight concerning the future design of fully optimized conjugates. This methodology is especially useful in tandem with constrained molecular dynamics (MD) studies, such that predictions may be made about conjugates not yet synthesized. Focusing on two B12 conjugates of the anorectic peptide PYY(3-36), one of which was previously demonstrated to have improved food intake reduction compared with PYY(3-36), we performed NMR structural analyses and used the information to conduct MD simulations. The study provides rare structural insight into vitamin B12 conjugates and validates the fact that B12 can be conjugated to a peptide without markedly affecting peptide secondary structure.