Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Adv ; 8(9): eabl9155, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35235355

RESUMEN

Tropical cyclones drive coastal ecosystem dynamics, and their frequency, intensity, and spatial distribution are predicted to shift with climate change. Patterns of resistance and resilience were synthesized for 4138 ecosystem time series from n = 26 storms occurring between 1985 and 2018 in the Northern Hemisphere to predict how coastal ecosystems will respond to future disturbance regimes. Data were grouped by ecosystems (fresh water, salt water, terrestrial, and wetland) and response categories (biogeochemistry, hydrography, mobile biota, sedentary fauna, and vascular plants). We observed a repeated pattern of trade-offs between resistance and resilience across analyses. These patterns are likely the outcomes of evolutionary adaptation, they conform to disturbance theories, and they indicate that consistent rules may govern ecosystem susceptibility to tropical cyclones.

2.
Ecology ; 103(2): e03572, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34706065

RESUMEN

Feral hogs modify ecosystems by consuming native species and altering habitat structure. These invasions can generate fundamentally different post-invasion habitats when disturbance changes community structure, ecosystem function, or recovery dynamics. Here, we use multiple three-year exclusion experiments to describe how feral hogs affect hyper-productive brackish marshes over time. We find that infrequent yet consistent hog foraging and trampling suppresses dominant plants by generating a perpetually disturbed habitat that favors competitively inferior species and disallows full vegetative recovery over time. Along borders between plant monocultures, trampling destroys dominant graminoids responsible for most aboveground marsh biomass while competitively inferior plants increase fivefold. Hog activities shift the brackish marsh disturbance regime from pulse to press, which changes the plant community: competitively inferior plants increase coverage, species diversity is doubled, and live cover is lowered by 30% as large plants are unable to take hold in hog-disturbed areas. Release from disturbance does not result in complete recovery (i.e., dominant plant monocultures) because hog consumer control is a combination of both top-down control and broader engineering effects. These results highlight how habitats are susceptible to invasive effects outside of structural destruction alone, especially if large consumers are pervasive over time and change the dynamics that sustain recovery.


Asunto(s)
Ecosistema , Humedales , Biomasa , Plantas , Porcinos
3.
Nat Commun ; 12(1): 6290, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725328

RESUMEN

Invasive consumers can cause extensive ecological damage to native communities but effects on ecosystem resilience are less understood. Here, we use drone surveys, manipulative experiments, and mathematical models to show how feral hogs reduce resilience in southeastern US salt marshes by dismantling an essential marsh cordgrass-ribbed mussel mutualism. Mussels usually double plant growth and enhance marsh resilience to extreme drought but, when hogs invade, switch from being essential for plant survival to a liability; hogs selectively forage in mussel-rich areas leading to a 50% reduction in plant biomass and slower post-drought recovery rate. Hogs increase habitat fragmentation across landscapes by maintaining large, disturbed areas through trampling of cordgrass during targeted mussel consumption. Experiments and climate-disturbance recovery models show trampling alone slows marsh recovery by 3x while focused mussel predation creates marshes that may never recover from large-scale disturbances without hog eradication. Our work highlights that an invasive consumer can reshape ecosystems not just via competition and predation, but by disrupting key, positive species interactions that underlie resilience to climatic disturbances.


Asunto(s)
Conducta Animal , Bivalvos/crecimiento & desarrollo , Ecosistema , Desarrollo de la Planta/fisiología , Poaceae/crecimiento & desarrollo , Simbiosis , Animales , Conservación de los Recursos Naturales/métodos , Porcinos , Humedales
4.
Glob Chang Biol ; 26(10): 5588-5601, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32710518

RESUMEN

Improving coral reef conservation requires heightened understanding of the mechanisms by which coral cope with changing environmental conditions to maintain optimal health. We used a long-term (10 month) in situ experiment with two phylogenetically diverse scleractinians (Acropora palmata and Porites porites) to test how coral-symbiotic algal interactions changed under real-world conditions that were a priori expected to be beneficial (fish-mediated nutrients) and to be harmful, but non-lethal, for coral (fish + anthropogenic nutrients). Analyzing nine response variables of nutrient stoichiometry and stable isotopes per coral fragment, we found that nutrients from fish positively affected coral growth, and moderate doses of anthropogenic nutrients had no additional effects. While growing, coral maintained homeostasis in their nutrient pools, showing tolerance to the different nutrient regimes. Nonetheless, structural equation models revealed more nuanced relationships, showing that anthropogenic nutrients reduced the diversity of coral-symbiotic algal interactions and caused nutrient and carbon flow to be dominated by the symbiont. Our findings show that nutrient and carbon pathways are fundamentally "rewired" under anthropogenic nutrient regimes in ways that could increase corals' susceptibility to further stressors. We hypothesize that our experiment captured coral in a previously unrecognized transition state between mutualism and antagonism. These findings highlight a notable parallel between how anthropogenic nutrients promote symbiont dominance with the holobiont, and how they promote macroalgal dominance at the coral reef scale. Our findings suggest more realistic experimental conditions, including studies across gradients of anthropogenic nutrient enrichment as well as the incorporation of varied nutrient and energy pathways, may facilitate conservation efforts to mitigate coral loss.


Asunto(s)
Antozoos , Animales , Carbono , Arrecifes de Coral , Nutrientes , Simbiosis
5.
Ecology ; 99(8): 1792-1801, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29992554

RESUMEN

Humans are altering nutrient dynamics through myriad pathways globally. Concurrent with the addition of nutrients via municipal, industrial, and agricultural sources, widespread consumer exploitation is changing consumer-mediated nutrient dynamics drastically. Thus, altered nutrient dynamics can occur through changes in the supply of multiple nutrients, as well as through changes in the sources of these nutrients. Seagrass ecosystems are heavily impacted by human activities, with highly altered nutrient dynamics from multiple causes. We simulate scenarios of altered nutrient supply and ratios, nitrogen:phosphorus (N:P), from two nutrient sources in seagrass ecosystems: anthropogenic fertilizer and fish excretion. In doing so we tested expectations rooted in ecological theory that suggest the importance of resource dynamics for predicting primary producer dynamics. Ecosystem functions were strongly altered by artificial fertilizer (e.g., seagrass growth increased by as much as 140%), whereas plant/algae community structure was most affected by fish-mediated nutrients or the interaction of both treatments (e.g., evenness increased by ~140% under conditions of low fish nutrients and high anthropogenic nutrients). Interactions between the nutrient sources were found for only two of six response variables, and the ratio of nutrient supply was the best predictor for only one response. These findings show that seagrass structure and function are well predicted by supply of a single nutrient (either N or P). Importantly, no single nutrient best explained the majority of responses-measures of community structure were best explained by the primary limiting nutrient to this system (P), whereas measures of growth and density of the dominant producer in the system were best explained by N. Thus, while our findings support aspects of theoretical expectations, the complexity of producer community responses belies broad generalities, underscoring the need to manage for multiple simultaneous nutrients in these imperiled coastal ecosystems.


Asunto(s)
Ecosistema , Nutrientes , Animales , Peces , Nitrógeno , Fósforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA