Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Cell Rep ; 43(7): 114500, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39046880

RESUMEN

Sleep debt accumulates during wakefulness, leading to increased slow wave activity (SWA) during sleep, an encephalographic marker for sleep need. The use-dependent demands of prior wakefulness increase sleep SWA locally. However, the circuitry and molecular identity of this "local sleep" remain unclear. Using pharmacology and optogenetic perturbations together with transcriptomics, we find that cortical brain-derived neurotrophic factor (BDNF) regulates SWA via the activation of tyrosine kinase B (TrkB) receptor and cAMP-response element-binding protein (CREB). We map BDNF/TrkB-induced sleep SWA to layer 5 (L5) pyramidal neurons of the cortex, independent of neuronal firing per se. Using mathematical modeling, we here propose a model of how BDNF's effects on synaptic strength can increase SWA in ways not achieved through increased firing alone. Proteomic analysis further reveals that TrkB activation enriches ubiquitin and proteasome subunits. Together, our study reveals that local SWA control is mediated by BDNF-TrkB-CREB signaling in L5 excitatory cortical neurons.

2.
Sci Adv ; 10(27): eadj4433, 2024 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959322

RESUMEN

Memory processes rely on a molecular signaling system that balances the interplay between positive and negative modulators. Recent research has focused on identifying memory-regulating genes and their mechanisms. Phospholipase C beta 1 (PLCß1), highly expressed in the hippocampus, reportedly serves as a convergence point for signal transduction through G protein-coupled receptors. However, the detailed role of PLCß1 in memory function has not been elucidated. Here, we demonstrate that PLCß1 in the dentate gyrus functions as a memory suppressor. We reveal that mice lacking PLCß1 in the dentate gyrus exhibit a heightened fear response and impaired memory extinction, and this excessive fear response is repressed by upregulation of PLCß1 through its overexpression or activation using a newly developed optogenetic system. Last, our results demonstrate that PLCß1 overexpression partially inhibits exaggerated fear response caused by traumatic experience. Together, PLCß1 is crucial in regulating contextual fear memory formation and potentially enhancing the resilience to trauma-related conditions.


Asunto(s)
Giro Dentado , Miedo , Memoria , Neuronas , Fosfolipasa C beta , Animales , Fosfolipasa C beta/metabolismo , Fosfolipasa C beta/genética , Miedo/fisiología , Giro Dentado/metabolismo , Giro Dentado/fisiología , Memoria/fisiología , Ratones , Neuronas/metabolismo , Neuronas/fisiología , Ratones Noqueados , Masculino , Optogenética , Ratones Endogámicos C57BL
3.
Nat Commun ; 15(1): 673, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253589

RESUMEN

CRISPR-Cas13 is widely used for programmable RNA interference, imaging, and editing. In this study, we develop a light-inducible Cas13 system called paCas13 by fusing Magnet with fragment pairs. The most effective split site, N351/C350, was identified and found to exhibit a low background and high inducibility. We observed significant light-induced perturbation of endogenous transcripts by paCas13. We further present a light-inducible base-editing system, herein called the padCas13 editor, by fusing ADAR2 to catalytically inactive paCas13 fragments. The padCas13 editor enabled reversible RNA editing under light and was effective in editing A-to-I and C-to-U RNA bases, targeting disease-relevant transcripts, and fine-tuning endogenous transcripts in mammalian cells in vitro. The padCas13 editor was also used to adjust post-translational modifications and demonstrated the ability to activate target transcripts in a mouse model in vivo. We therefore present a light-inducible RNA-modulating technique based on CRISPR-Cas13 that enables target RNAs to be diversely manipulated in vitro and in vivo, including through RNA degradation and base editing. The approach using the paCas13 system can be broadly applicable to manipulating RNA in various disease states and physiological processes, offering potential additional avenues for research and therapeutic development.


Asunto(s)
Sistemas CRISPR-Cas , ARN , Animales , Ratones , ARN/genética , Sistemas CRISPR-Cas/genética , Edición Génica , Edición de ARN/genética , Interferencia de ARN , Mamíferos
4.
Commun Biol ; 7(1): 115, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245624

RESUMEN

A critical requirement for studying cell mechanics is three-dimensional assessment of cellular shapes and forces with high spatiotemporal resolution. Traction force microscopy with fluorescence imaging enables the measurement of cellular forces, but it is limited by photobleaching and a slow acquisition speed. Here, we present refractive-index traction force microscopy (RI-TFM), which simultaneously quantifies the volumetric morphology and traction force of cells using a high-speed illumination scheme with 0.5-Hz temporal resolution. Without labelling, our method enables quantitative analyses of dry-mass distributions and shear (in-plane) and normal (out-of-plane) tractions of single cells on the extracellular matrix. When combined with a constrained total variation-based deconvolution algorithm, it provides 0.55-Pa shear and 1.59-Pa normal traction sensitivity for a 1-kPa hydrogel substrate. We demonstrate its utility by assessing the effects of compromised intracellular stress and capturing the rapid dynamics of cellular junction formation in the spatiotemporal changes in non-planar traction components.


Asunto(s)
Fenómenos Mecánicos , Tracción , Microscopía de Fuerza Atómica/métodos , Algoritmos
5.
Nat Methods ; 21(2): 353-360, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191933

RESUMEN

The structural plasticity of synapses is crucial for regulating brain functions. However, currently available methods for studying synapse organization based on split fluorescent proteins (FPs) have been limited in assessing synaptic dynamics in vivo due to the irreversible binding of split FPs. Here, we develop 'SynapShot', a method for visualizing the structural dynamics of intact synapses by combining dimerization-dependent FPs (ddFPs) with engineered synaptic adhesion molecules. SynapShot allows real-time monitoring of reversible and bidirectional changes of synaptic contacts under physiological stimulation. The application of green and red ddFPs in SynapShot enables simultaneous visualization of two distinct populations of synapses. Notably, the red-shifted SynapShot is highly compatible with blue light-based optogenetic techniques, allowing for visualization of synaptic dynamics while precisely controlling specific signaling pathways. Furthermore, we demonstrate that SynapShot enables real-time monitoring of structural changes in synaptic contacts in the mouse brain during both primitive and higher-order behaviors.


Asunto(s)
Neuronas , Sinapsis , Animales , Ratones , Sinapsis/fisiología , Neuronas/fisiología , Transducción de Señal , Células Cultivadas , Colorantes , Plasticidad Neuronal
6.
JACS Au ; 3(11): 3055-3065, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38034956

RESUMEN

Intrinsically disordered proteins (IDPs) not only play important roles in biological processes but are also linked with the pathogenesis of various human diseases. Specific and reliable sensing of IDPs is crucial for exploring their roles but remains elusive due to structural plasticity. Here, we present the development of a new type of fluorescent protein for the ratiometric sensing and tracking of an IDP. A ß-strand of green fluorescent protein (GFP) was truncated, and the resulting GFP was further engineered to undergo the transition in the absorption maximum upon binding of a target motif within amyloid-ß (Aß) as a model IDP through rational design and directed evolution. Spectroscopic and structural analyses of the engineered truncated GFP demonstrated that a shift in the absorption maximum is driven by the change in the chromophore state from an anionic (460 nm) state into a neutral (390 nm) state as the Aß binds, allowing a ratiometric detection of Aß. The utility of the developed GFP was shown by the efficient and specific detection of an Aß and the tracking of its conformational change and localization in astrocytes.

7.
Mol Brain ; 16(1): 73, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848907

RESUMEN

Calcium ions (Ca2+) play pivotal roles in regulating diverse brain functions, including cognition, emotion, locomotion, and learning and memory. These functions are intricately regulated by a variety of Ca2+-dependent cellular processes, encompassing synaptic plasticity, neuro/gliotransmitter release, and gene expression. In our previous work, we developed 'monster OptoSTIM1' (monSTIM1), an improved OptoSTIM1 that selectively activates Ca2+-release-activated Ca2+ (CRAC) channels in the plasma membrane through blue light, allowing precise control over intracellular Ca2+ signaling and specific brain functions. However, the large size of the coding sequence of monSTIM1 poses a limitation for its widespread use, as it exceeds the packaging capacity of adeno-associated virus (AAV). To address this constraint, we have introduced monSTIM1 variants with reduced coding sequence sizes and established AAV-based systems for expressing them in neurons and glial cells in the mouse brain. Upon expression by AAVs, these monSTIM1 variants significantly increased the expression levels of cFos in neurons and astrocytes in the hippocampal CA1 region following non-invasive light illumination. The use of monSTIM1 variants offers a promising avenue for investigating the spatiotemporal roles of Ca2+-mediated cellular activities in various brain functions. Furthermore, this toolkit holds potential as a therapeutic strategy for addressing brain disorders associated with aberrant Ca2+ signaling.


Asunto(s)
Canales de Calcio , Dependovirus , Ratones , Animales , Dependovirus/metabolismo , Optogenética , Región CA1 Hipocampal/metabolismo , Aprendizaje , Calcio/metabolismo , Señalización del Calcio/fisiología
8.
Mol Brain ; 16(1): 56, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37403137

RESUMEN

RET (REarranged during Transfection) is a receptor tyrosine kinase that transduces various external stimuli into biological functions, such as survival and differentiation, in neurons. In the current study, we developed an optogenetic tool for modulating RET signaling, termed optoRET, combining the cytosolic region of human RET with a blue-light-inducible homo-oligomerizing protein. By varying the duration of photoactivation, we were able to dynamically modulate RET signaling. Activation of optoRET recruited Grb2 (growth factor receptor-bound protein 2) and stimulated AKT and ERK (extracellular signal-regulated kinase) in cultured neurons, evoking robust and efficient ERK activation. By locally activating the distal part of the neuron, we were able to retrogradely transduce the AKT and ERK signal to the soma and trigger formation of filopodia-like F-actin structures at stimulated regions through Cdc42 (cell division control 42) activation. Importantly, we successfully modulated RET signaling in dopaminergic neurons of the substantia nigra in the mouse brain. Collectively, optoRET has the potential to be developed as a future therapeutic intervention, modulating RET downstream signaling with light.


Asunto(s)
Optogenética , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Humanos , Seudópodos/metabolismo , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Axones/metabolismo
9.
Mol Ther ; 31(6): 1675-1687, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-36945774

RESUMEN

CRISPR-Cas13-mediated viral genome targeting is a novel strategy for defending against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Here, we generated mRNA-encoded Cas13b targeting the open reading frame 1b (ORF1b) region to effectively degrade the RNA-dependent RNA polymerase gene. Of the 12 designed CRISPR RNAs (crRNAs), those targeting the pseudoknot site upstream of ORF1b were found to be the most effective in suppressing SARS-CoV-2 propagation. Pseudoknot-targeting Cas13b reduced expression of the spike protein and attenuated viral replication by 99%. It also inhibited the replication of multiple SARS-CoV-2 variants, exhibiting broad potency. We validated the therapeutic efficacy of this system in SARS-CoV-2-infected hACE2 transgenic mice, demonstrating that crRNA treatment significantly reduced viral titers. Our findings suggest that the pseudoknot region is a strategic site for targeted genomic degradation of SARS-CoV-2. Hence, pseudoknot-targeting Cas13b could be a breakthrough therapy for overcoming infections by SARS-CoV-2 or other RNA viruses.


Asunto(s)
COVID-19 , Animales , Ratones , SARS-CoV-2/genética , Replicación Viral , ARN Viral/genética , ARN Viral/metabolismo
10.
Mol Ther ; 31(5): 1480-1495, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36932674

RESUMEN

Optogenetic techniques permit non-invasive, spatiotemporal, and reversible modulation of cellular activities. Here, we report a novel optogenetic regulatory system for insulin secretion in human pluripotent stem cell (hPSC)-derived pancreatic islet-like organoids using monSTIM1 (monster-opto-Stromal interaction molecule 1), an ultra-light-sensitive OptoSTIM1 variant. The monSTIM1 transgene was incorporated at the AAVS1 locus in human embryonic stem cells (hESCs) by CRISPR-Cas9-mediated genome editing. Not only were we able to elicit light-induced intracellular Ca2+ concentration ([Ca2+]i) transients from the resulting homozygous monSTIM1+/+-hESCs, but we also successfully differentiated them into pancreatic islet-like organoids (PIOs). Upon light stimulation, the ß-cells in these monSTIM1+/+-PIOs displayed reversible and reproducible [Ca2+]i transient dynamics. Furthermore, in response to photoexcitation, they secreted human insulin. Light-responsive insulin secretion was similarly observed in monSTIM1+/+-PIOs produced from neonatal diabetes (ND) patient-derived induced pluripotent stem cells (iPSCs). Under LED illumination, monSTIM1+/+-PIO-transplanted diabetic mice produced human c-peptide. Collectively, we developed a cellular model for the optogenetic control of insulin secretion using hPSCs, with the potential to be applied to the amelioration of hyperglycemic disorders.


Asunto(s)
Diabetes Mellitus Experimental , Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Islotes Pancreáticos , Células Madre Pluripotentes , Humanos , Ratones , Animales , Secreción de Insulina , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Islotes Pancreáticos/metabolismo , Células Madre Pluripotentes/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Organoides , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular
12.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142154

RESUMEN

The activation of tropomyosin receptor kinase B (TrkB), the receptor of brain-derived neurotrophic factor (BDNF), plays a key role in induced juvenile-like plasticity (iPlasticity), which allows restructuring of neural networks in adulthood. Optically activatable TrkB (optoTrkB) can temporarily and spatially evoke iPlasticity, and recently, optoTrkB (E281A) was developed as a variant that is highly sensitive to light stimulation while having lower basal activity compared to the original optoTrkB. In this study, we validate optoTrkB (E281A) activated in alpha calcium/calmodulin-dependent protein kinase type II positive (CKII+) pyramidal neurons or parvalbumin-positive (PV+) interneurons in the mouse visual cortex by immunohistochemistry. OptoTrkB (E281A) was activated in PV+ interneurons and CKII+ pyramidal neurons with blue light (488 nm) through the intact skull and fur, and through a transparent skull, respectively. LED light stimulation significantly increased the intensity of phosphorylated ERK and CREB even through intact skull and fur. These findings indicate that the highly sensitive optoTrkB (E281A) can be used in iPlasticity studies of both inhibitory and excitatory neurons, with flexible stimulation protocols in behavioural studies.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Corteza Visual , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio , Ratones , Neuronas/metabolismo , Parvalbúminas/metabolismo , Receptor trkB/metabolismo , Tropomiosina/metabolismo , Corteza Visual/metabolismo
13.
J Neurosci ; 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35863892

RESUMEN

The PFC is thought to be the region where remote memory is recalled. However, the neurotrophic receptors that underlie the remote memory remain largely unknown. Here, we benefited from auto-assembly split Cre to accomplish the neural projection-specific recombinase activity without spontaneous leakage. Deletion of tropomyosin receptor kinase B (TrkB) in neurons projecting from the medial entorhinal cortex to the mPFC displayed reduced remote memory recall from the male mice, but the recent recall was intact. We found that the TrkB deletion attenuates the participation of mPFC cells in the remote fear memory recall. The disruption of remote recall was attributed to reduced reactivation of cells in the mPFC. Notably, TrkB deletion seriously inhibited experience-dependent maturation of oligodendroglia in the PFC, resulting in defects in remote recall that were rescued by clemastine administration. Together, our data suggest that TrkB in intercortical circuits functions in remote memory consolidation.Significance StatementRetrieving the past experiences or events is essential for the ones to lead life. The investigations performed in the rodent model have disclosed that the systems consolidation of memory accompanying changes of cortical circuits and transcriptome is required for maintaining the memory for a long time. In this study, the split Cre with TrkBflox/flox mice were subjected to discover that TrkB in the neurons plays a role in remote memory consolidation. We evaluated the contextual fear memory and labeled cells, which revealed deletion of TrkB interrupts newborn oligodendrocyte and reactivation of cells in mPFC at remote recall. Our data provide the implication that remote memory is relevant to neurotrophic receptor signaling as well as its influence on non-neuronal cells.

14.
Neuron ; 110(3): 423-435.e4, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34852235

RESUMEN

Spatiotemporal control of brain activity by optogenetics has emerged as an essential tool to study brain function. For silencing brain activity, optogenetic probes, such as halorhodopsin and archaerhodopsin, inhibit transmitter release indirectly by hyperpolarizing membrane potentials. However, these probes cause an undesirable ionic imbalance and rebound spikes. Moreover, they are not applicable to use in non-excitable glial cells. Here we engineered Opto-vTrap, a light-inducible and reversible inhibition system to temporarily trap the transmitter-containing vesicles from exocytotic release. Light activation of Opto-vTrap caused full vesicle clusterization and complete inhibition of exocytosis within 1 min, which recovered within 30 min after light off. We found a significant reduction in synaptic and gliotransmission upon activation of Opto-vTrap in acute brain slices. Opto-vTrap significantly inhibited hippocampus-dependent memory retrieval with full recovery within an hour. We propose Opto-vTrap as a next-generation optogenetic silencer to control brain activity and behavior with minimal confounding effects.


Asunto(s)
Optogenética , Transmisión Sináptica , Encéfalo , Exocitosis , Hipocampo , Transmisión Sináptica/fisiología
15.
Nat Cell Biol ; 23(12): 1329-1337, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34876684

RESUMEN

Simultaneous imaging of various facets of intact biological systems across multiple spatiotemporal scales is a long-standing goal in biology and medicine, for which progress is hindered by limits of conventional imaging modalities. Here we propose using the refractive index (RI), an intrinsic quantity governing light-matter interaction, as a means for such measurement. We show that major endogenous subcellular structures, which are conventionally accessed via exogenous fluorescence labelling, are encoded in three-dimensional (3D) RI tomograms. We decode this information in a data-driven manner, with a deep learning-based model that infers multiple 3D fluorescence tomograms from RI measurements of the corresponding subcellular targets, thereby achieving multiplexed microtomography. This approach, called RI2FL for refractive index to fluorescence, inherits the advantages of both high-specificity fluorescence imaging and label-free RI imaging. Importantly, full 3D modelling of absolute and unbiased RI improves generalization, such that the approach is applicable to a broad range of new samples without retraining to facilitate immediate applicability. The performance, reliability and scalability of this technology are extensively characterized, and its various applications within single-cell profiling at unprecedented scales (which can generate new experimentally testable hypotheses) are demonstrated.


Asunto(s)
Aprendizaje Profundo , Tomografía con Microscopio Electrónico/métodos , Imagenología Tridimensional/métodos , Análisis de la Célula Individual/métodos , Fracciones Subcelulares/metabolismo , Células 3T3 , Actinas/metabolismo , Animales , Células COS , Línea Celular Tumoral , Membrana Celular/metabolismo , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Gotas Lipídicas/metabolismo , Ratones , Mitocondrias/metabolismo , Imagen Óptica/métodos , Refractometría
16.
Nat Commun ; 12(1): 5631, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561453

RESUMEN

Insulin/IGF-1 signaling (IIS) regulates various physiological aspects in numerous species. In Caenorhabditis elegans, mutations in the daf-2/insulin/IGF-1 receptor dramatically increase lifespan and immunity, but generally impair motility, growth, and reproduction. Whether these pleiotropic effects can be dissociated at a specific step in insulin/IGF-1 signaling pathway remains unknown. Through performing a mutagenesis screen, we identified a missense mutation daf-18(yh1) that alters a cysteine to tyrosine in DAF-18/PTEN phosphatase, which maintained the long lifespan and enhanced immunity, while improving the reduced motility in adult daf-2 mutants. We showed that the daf-18(yh1) mutation decreased the lipid phosphatase activity of DAF-18/PTEN, while retaining a partial protein tyrosine phosphatase activity. We found that daf-18(yh1) maintained the partial activity of DAF-16/FOXO but restricted the detrimental upregulation of SKN-1/NRF2, contributing to beneficial physiological traits in daf-2 mutants. Our work provides important insights into how one evolutionarily conserved component, PTEN, can coordinate animal health and longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Longevidad/genética , Mutación , Fosfohidrolasa PTEN/genética , Receptor IGF Tipo 1/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Aptitud Genética/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente/métodos , Fosfohidrolasa PTEN/metabolismo , RNA-Seq/métodos , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
17.
Adv Biol (Weinh) ; 5(10): e2101008, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34463435

RESUMEN

Endocytosis is an important process by which many signaling receptors reach their intracellular effectors. Accumulating evidence suggests that internalized receptors play critical roles in triggering cellular signaling, including transforming growth factor ß (TGFß) signaling. Despite intensive studies on the TGFß pathway over the last decades, the necessity of TGFß receptor endocytosis for downstream TGFß signaling responses is a subject of debate. In this study, mathematical modeling and synthetic biology approaches are combined to re-evaluate whether TGFß receptor internalization is indispensable for inducing Smad signaling. It is found that optogenetic systems with plasma membrane-tethered TGFß receptors can induce fast and sustained Smad2 activation upon light stimulations. Modeling analysis suggests that endocytosis is precluded for the membrane-anchored optogenetic TGFß receptors. Therefore, this study provides new evidence to support that TGFß receptor internalization is not required for Smad2 activation.


Asunto(s)
Receptores de Factores de Crecimiento Transformadores beta , Factor de Crecimiento Transformador beta , Endocitosis , Optogenética , Receptores de Factores de Crecimiento Transformadores beta/genética , Transducción de Señal
18.
Nat Commun ; 12(1): 2695, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976205

RESUMEN

mTOR signaling, involving mTORC1 and mTORC2 complexes, critically regulates neural development and is implicated in various brain disorders. However, we do not fully understand all of the upstream signaling components that can regulate mTOR signaling, especially in neurons. Here, we show a direct, regulated inhibition of mTOR by Tanc2, an adaptor/scaffolding protein with strong neurodevelopmental and psychiatric implications. While Tanc2-null mice show embryonic lethality, Tanc2-haploinsufficient mice survive but display mTORC1/2 hyperactivity accompanying synaptic and behavioral deficits reversed by mTOR-inhibiting rapamycin. Tanc2 interacts with and inhibits mTOR, which is suppressed by mTOR-activating serum or ketamine, a fast-acting antidepressant. Tanc2 and Deptor, also known to inhibit mTORC1/2 minimally affecting neurodevelopment, distinctly inhibit mTOR in early- and late-stage neurons. Lastly, Tanc2 inhibits mTORC1/2 in human neural progenitor cells and neurons. In summary, our findings show that Tanc2 is a mTORC1/2 inhibitor affecting neurodevelopment.


Asunto(s)
Encéfalo/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Neuronas/metabolismo , Proteínas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Células Cultivadas , Células HEK293 , Humanos , Inmunosupresores/farmacología , Discapacidades para el Aprendizaje/genética , Discapacidades para el Aprendizaje/fisiopatología , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Proteínas/genética , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología
19.
Commun Biol ; 4(1): 548, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972668

RESUMEN

Mitochondrial function and innate immunity are intimately linked; however, the mechanisms how mitochondrion-shaping proteins regulate innate host defense remains largely unknown. Herein we show that mitofusin-2 (MFN2), a mitochondrial fusion protein, promotes innate host defense through the maintenance of aerobic glycolysis and xenophagy via hypoxia-inducible factor (HIF)-1α during intracellular bacterial infection. Myeloid-specific MFN2 deficiency in mice impaired the antimicrobial and inflammatory responses against mycobacterial and listerial infection. Mechanistically, MFN2 was required for the enhancement of inflammatory signaling through optimal induction of aerobic glycolysis via HIF-1α, which is activated by mitochondrial respiratory chain complex I and reactive oxygen species, in macrophages. MFN2 did not impact mitophagy during infection; however, it promoted xenophagy activation through HIF-1α. In addition, MFN2 interacted with the late endosomal protein Rab7, to facilitate xenophagy during mycobacterial infection. Our findings reveal the mechanistic regulations by which MFN2 tailors the innate host defense through coordinated control of immunometabolism and xenophagy via HIF-1α during bacterial infection.


Asunto(s)
Infecciones Bacterianas/inmunología , GTP Fosfohidrolasas/fisiología , Glucólisis , Inmunidad Innata/inmunología , Macroautofagia , Macrófagos/inmunología , Mitocondrias/inmunología , Animales , Bacterias/crecimiento & desarrollo , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/microbiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
20.
J Cell Sci ; 134(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34013963

RESUMEN

The intracellular lifestyle represents a challenge for the rapidly proliferating liver stage Plasmodium parasite. In order to scavenge host resources, Plasmodium has evolved the ability to target and manipulate host cell organelles. Using dynamic fluorescence-based imaging, we here show an interplay between the pre-erythrocytic stages of Plasmodium berghei and the host cell Golgi during liver stage development. Liver stage schizonts fragment the host cell Golgi into miniaturized stacks, which increases surface interactions with the parasitophorous vacuolar membrane of the parasite. Expression of specific dominant-negative Arf1 and Rab GTPases, which interfere with the host cell Golgi-linked vesicular machinery, results in developmental delay and diminished survival of liver stage parasites. Moreover, functional Rab11a is critical for the ability of the parasites to induce Golgi fragmentation. Altogether, we demonstrate that the structural integrity of the host cell Golgi and Golgi-associated vesicular traffic is important for optimal pre-erythrocytic development of P. berghei. The parasite hijacks the Golgi structure of the hepatocyte to optimize its own intracellular development. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Malaria , Parásitos , Animales , Hepatocitos , Hígado , Plasmodium berghei , Proteínas Protozoarias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA