RESUMEN
Plant pathogens pose increasing threats to global food security, causing yield losses that exceed 30% in food-deficit regions. Xylella fastidiosa (Xf) represents the major transboundary plant pest and one of the world's most damaging pathogens in terms of socioeconomic impact. Spectral screening methods are critical to detect non-visual symptoms of early infection and prevent spread. However, the subtle pathogen-induced physiological alterations that are spectrally detectable are entangled with the dynamics of abiotic stresses. Here, using airborne spectroscopy and thermal scanning of areas covering more than one million trees of different species, infections and water stress levels, we reveal the existence of divergent pathogen- and host-specific spectral pathways that can disentangle biotic-induced symptoms. We demonstrate that uncoupling this biotic-abiotic spectral dynamics diminishes the uncertainty in the Xf detection to below 6% across different hosts. Assessing these deviating pathways against another harmful vascular pathogen that produces analogous symptoms, Verticillium dahliae, the divergent routes remained pathogen- and host-specific, revealing detection accuracies exceeding 92% across pathosystems. These urgently needed hyperspectral methods advance early detection of devastating pathogens to reduce the billions in crop losses worldwide.
Asunto(s)
Ascomicetos/fisiología , Olea/microbiología , Enfermedades de las Plantas/microbiología , Prunus dulcis/microbiología , Xylella/fisiología , Deshidratación , Especificidad del Huésped , Olea/química , Prunus dulcis/química , Análisis Espectral , Estrés FisiológicoRESUMEN
With the advent of Sentinel-2, it is now possible to generate large-scale chlorophyll content maps with unprecedented spatial and temporal resolution, suitable for monitoring ecological processes such as vegetative stress and/or decline. However methodological gaps exist for adapting this technology to heterogeneous natural vegetation and for transferring it among vegetation species or plan functional types. In this study, we investigated the use of Sentinel-2A imagery for estimating needle chlorophyll (Ca+b) in a sparse pine forest undergoing significant needle loss and tree mortality. Sentinel-2A scenes were acquired under two extreme viewing geometries (June vs. December 2016) coincident with the acquisition of high-spatial resolution hyperspectral imagery, and field measurements of needle chlorophyll content and crown leaf area index. Using the high-resolution hyperspectral scenes acquired over 61 validation sites we found the CI chlorophyll index R750/R710 and Macc index (which uses spectral bands centered at 680â¯nm, 710â¯nm and 780â¯nm) had the strongest relationship with needle chlorophyll content from individual tree crowns (r2â¯=â¯0.61 and r2â¯=â¯0.59, respectively; pâ¯<â¯0.001), while TCARI and TCARI/OSAVI, originally designed for uniform agricultural canopies, did not perform as well (r2â¯=â¯0.21 and r2â¯=â¯0.01, respectively). Using lower-resolution Sentinel-2A data validated against hyperspectral estimates and ground truth needle chlorophyll content, the red-edge index CI and the Sentinel-specific chlorophyll indices CI-Gitelson, NDRE1 and NDRE2 had the highest accuracy (with r2 values >0.7 for June and >0.4 for December; pâ¯<â¯0.001). The retrieval of needle chlorophyll content from the entire Sentinel-2A bandset using the radiative transfer model INFORM yielded r2â¯=â¯0.71 (RMSEâ¯=â¯8.1⯵g/cm2) for June, r2â¯=â¯0.42 (RMSEâ¯=â¯12.2⯵g/cm2) for December, and r2â¯=â¯0.6 (RMSEâ¯=â¯10.5⯵g/cm2) as overall performance using the June and December datasets together. This study demonstrates the retrieval of leaf Ca+b with Sentinel-2A imagery by red-edge indices and by an inversion method based on a hybrid canopy reflectance model that accounts for tree density, background and shadow components common in sparse forest canopies.
RESUMEN
Plant pathogens cause significant losses to agricultural yields and increasingly threaten food security1, ecosystem integrity and societies in general2-5. Xylella fastidiosa is one of the most dangerous plant bacteria worldwide, causing several diseases with profound impacts on agriculture and the environment6. Primarily occurring in the Americas, its recent discovery in Asia and Europe demonstrates that X. fastidiosa's geographic range has broadened considerably, positioning it as a reemerging global threat that has caused socioeconomic and cultural damage7,8. X. fastidiosa can infect more than 350 plant species worldwide9, and early detection is critical for its eradication8. In this article, we show that changes in plant functional traits retrieved from airborne imaging spectroscopy and thermography can reveal X. fastidiosa infection in olive trees before symptoms are visible. We obtained accuracies of disease detection, confirmed by quantitative polymerase chain reaction, exceeding 80% when high-resolution fluorescence quantified by three-dimensional simulations and thermal stress indicators were coupled with photosynthetic traits sensitive to rapid pigment dynamics and degradation. Moreover, we found that the visually asymptomatic trees originally scored as affected by spectral plant-trait alterations, developed X. fastidiosa symptoms at almost double the rate of the asymptomatic trees classified as not affected by remote sensing. We demonstrate that spectral plant-trait alterations caused by X. fastidiosa infection are detectable previsually at the landscape scale, a critical requirement to help eradicate some of the most devastating plant diseases worldwide.
Asunto(s)
Enfermedades de las Plantas/microbiología , Xylella , Fluorescencia , Imagenología Tridimensional , Olea/microbiología , Imágenes Satelitales , Análisis Espectral/métodos , TermografíaRESUMEN
The operational monitoring of forest decline requires the development of remote sensing methods that are sensitive to the spatiotemporal variations of pigment degradation and canopy defoliation. In this context, the red-edge spectral region (RESR) was proposed in the past due to its combined sensitivity to chlorophyll content and leaf area variation. In this study, the temporal dimension of the RESR was evaluated as a function of forest decline using a radiative transfer method with the PROSPECT and 3D FLIGHT models. These models were used to generate synthetic pine stands simulating decline and recovery processes over time and explore the temporal rate of change of the red-edge chlorophyll index (CI) as compared to the trajectories obtained for the structure-related Normalized Difference Vegetation Index (NDVI). The temporal trend method proposed here consisted of using synthetic spectra to calculate the theoretical boundaries of the subspace for healthy and declining pine trees in the temporal domain, defined by CItime=n/CItime=n+1 vs. NDVItime=n/NDVItime=n+1. Within these boundaries, trees undergoing decline and recovery processes showed different trajectories through this subspace. The method was then validated using three high-resolution airborne hyperspectral images acquired at 40â¯cm resolution and 260 spectral bands of 6.5â¯nm full-width half-maximum (FWHM) over a forest with widespread tree decline, along with field-based monitoring of chlorosis and defoliation (i.e., 'decline' status) in 663 trees between the years 2015 and 2016. The temporal rate of change of chlorophyll vs. structural indices, based on reflectance spectra extracted from the hyperspectral images, was different for trees undergoing decline, and aligned towards the decline baseline established using the radiative transfer models. By contrast, healthy trees over time aligned towards the theoretically obtained healthy baseline. The applicability of this temporal trend method to the red-edge bands of the MultiSpectral Imager (MSI) instrument on board Sentinel-2a for operational forest status monitoring was also explored by comparing the temporal rate of change of the Sentinel-2-derived CI over areas with declining and healthy trees. Results demonstrated that the Sentinel-2a red-edge region was sensitive to the temporal dimension of forest condition, as the relationships obtained for pixels in healthy condition deviated from those of pixels undergoing decline.