Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
2.
bioRxiv ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39185195

RESUMEN

Neonicotinoid insecticides act selectively on their nicotinic receptor targets leading to variable sensitivity among arthropods. This study aimed to investigate the molecular mechanisms underlying contrasting susceptibility to neonicotinoids observed in wild populations of two mosquito sibling species. Bioassays and a synergism test revealed that the sister taxa, Anopheles gambiae and An. coluzzii, from Yaounde, Cameroon, rely on cytochrome P450s to detoxify neonicotinoids and develop resistance. However, contrary to An. coluzzii, An. gambiae populations are evolving stronger resistance to several active ingredients facilitated by mutations and reduced expression of nicotinic acetylcholine receptors. Six mutations were detected in coding sequences of the ß1 and α6 subunits, including two substitutions in one of the loops that modulate ligand binding and sensitivity. Allele frequencies were strongly correlated with a susceptibility gradient between An. coluzzii and An. gambiae suggesting that the mutations may play a key role in sensitivity. Messenger RNA expression levels of the ß1, α3, and α7 subunits decreased dramatically, on average by 23.27, 17.50, 15.80-fold, respectively, in wild An. gambiae populations compared to a susceptible insectary colony. By contrast, only the ß2 and α9-1 subunits were moderately downregulated (5.28 and 2.67-fold change, respectively) in field-collected An. coluzzii adults relative to susceptible colonized mosquitoes. Our findings provide critical information for the application and resistance management of neonicotinoids in malaria prevention.

3.
Sci Total Environ ; 948: 174809, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39019277

RESUMEN

In recent years, emerging environmental pollutants have increasingly endangered the health of freshwater organisms. The gut microbiota exhibits sensitivity to medications, dietary factors and environmental pollutants, rendering it a novel target for toxicological studies. The gut microbiota can be a potential exposure route affecting the host's health. Herein, we review the current knowledge on two different but concurrent pollutants, microplastics and pesticides, regarding their impact on the gut microbiota, which includes alterations in microbial composition, gene expression, function, and health effects in the hosts. Moreover, synergetic interactions between microplastics and pesticides can exacerbate dysbiosis and health risks. We discuss health-related implications of gut microbial changes based on the consequences in metabolism, immunity, and physiology function. Further research is needed to discover the mechanisms underlying these effects and develop strategies for mitigating their harmful impacts on freshwater animals.


Asunto(s)
Agua Dulce , Microbioma Gastrointestinal , Microplásticos , Plaguicidas , Contaminantes Químicos del Agua , Microbioma Gastrointestinal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Animales , Plaguicidas/toxicidad
4.
J Biol Chem ; 299(12): 105379, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37871745

RESUMEN

Osteoclasts are specialized cells responsible for bone resorption, a highly energy-demanding process. Focus on osteoclast metabolism could be a key for the treatment of osteolytic diseases including osteoporosis. In this context, AMP-activated protein kinase α1 (AMPKα1), an energy sensor highly expressed in osteoclasts, participates in the metabolic reconfiguration during osteoclast differentiation and activation. This study aimed to elucidate the role of AMPKα1 during osteoclastogenesis in vitro and its impact in bone loss in vivo. Using LysMcre/0AMPK⍺1f/f animals and LysMcre/0 as control, we evaluated how AMPKα1 interferes with osteoclastogenesis and bone resorption activity in vitro. We found that AMPKα1 is highly expressed in the early stages of osteoclastogenesis. Genetic deletion of AMPKα1 leads to increased gene expression of osteoclast differentiation and fusion markers. In addition, LysMcre/0AMPK⍺1f/f mice had an increased number and size of differentiated osteoclast. Accordingly, AMPKα1 negatively regulates bone resorption in vitro, as evidenced by the area of bone resorption in LysMcre/0AMPK⍺1f/f osteoclasts. Our data further demonstrated that AMPKα1 regulates mitochondrial fusion and fission markers upregulating Mfn2 and downregulating DRP1 (dynamics-related protein 1) and that Ctskcre/0AMPK⍺1f/f osteoclasts lead to an increase in the number of mitochondria in AMPK⍺1-deficient osteoclast. In our in vivo study, femurs from Ctskcre/0AMPK⍺1f/f animals exhibited bone loss associated with the increased number of osteoclasts, and there was no difference between Sham and ovariectomized group. Our data suggest that AMPKα1 acts as a negative regulator of osteoclastogenesis, and the depletion of AMPKα1 in osteoclast leads to a bone loss state similar to that observed after ovariectomy.


Asunto(s)
Resorción Ósea , Osteoclastos , Animales , Femenino , Ratones , Resorción Ósea/genética , Resorción Ósea/metabolismo , Diferenciación Celular , Ratones Endogámicos C57BL , Osteoclastos/metabolismo , Osteogénesis , Osteoporosis/genética , Osteoporosis/metabolismo , Ligando RANK/metabolismo
5.
Environ Toxicol Pharmacol ; 103: 104280, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37741478

RESUMEN

In this study, we captured cane toads (Rhinella marina) in four sites located in different regions affected by anthropogenic activities in Mexico. Subsequently we analyzed liver tissue for the presence of organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) The levels of these POPs in the toads' livers ranged from 863.2 to 3109.6 ng/g of lipid weight across all sites. A multivariate statistical analysis highlighted two sites with the highest POPs levels, with the most polluted site displaying a high level of PCBs, suggesting influence of industrial activities. The second most polluted site displayed significant amounts of OCs, linking this location to agricultural activity. Additionally, we found pesticide metabolites and isomers that allowed us to distinguish past and recent exposure events. Our observations indicate that R. marina is suitable bioindicator of sites impacted by anthropogenic activities.

6.
J Toxicol Environ Health B Crit Rev ; 25(8): 405-421, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36351281

RESUMEN

Microplastics (MPs) are contaminants widely distributed in the environment and biota. Previously, most studies focused on identifying and characterizing microplastics in the marine environment, while their impact on freshwater ecosystems remains to be determined. This review summarizes recent findings regarding MPs physiological, immunological, and genetic effects on amphibians based upon the biological relevance of this species as indicators of freshwater pollution. Data demonstrated that MPs contamination may potentially alter various physiological processes in aquatic animals, mainly in the embryonic stages. It is worthwhile noting that adverse effects might be enhanced in synergy with other pollutants. However, amphibians might counteract the effect of MPs and other pollutants through microbiota present both in the intestine and on the skin. In addition, amphibian microbial composition might also be altered by MPs themselves in a manner that leads to unpredicted health consequences in amphibians.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos , Ecosistema , Monitoreo del Ambiente , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Anfibios
7.
Cancer Immunol Res ; 10(11): 1299-1308, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36083496

RESUMEN

Cytotoxic agents synergize with immune checkpoint inhibitors and improve outcomes for patients with several cancer types. Nonetheless, a parallel increase in the incidence of dose-limiting side effects, such as peripheral neuropathy, is often observed. Here, we investigated the role of the programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) axis in the modulation of paclitaxel-induced neuropathic pain. We found that human and mouse neural tissues, including the dorsal root ganglion (DRG), expressed basal levels of PD-1 and PD-L1. During the development of paclitaxel-induced neuropathy, an increase in PD-L1 expression was observed in macrophages from the DRG. This effect depended on Toll-like receptor 4 activation by paclitaxel. Furthermore, PD-L1 inhibited pain behavior triggered by paclitaxel or formalin in mice, suggesting that PD-1/PD-L1 signaling attenuates peripheral neuropathy development. Consistent with this, we observed that the combined use of anti-PD-L1 plus paclitaxel increased mechanical allodynia and chronic neuropathy development induced by single agents. This effect was associated with higher expression of inflammatory markers (Tnf, Il6, and Cx3cr1) in peripheral nervous tissue. Together, these results suggest that PD-1/PD-L1 inhibitors enhance paclitaxel-induced neuropathic pain by suppressing PD-1/PD-L1 antinociceptive signaling.


Asunto(s)
Antineoplásicos Fitogénicos , Neuralgia , Ratas , Humanos , Ratones , Animales , Receptor de Muerte Celular Programada 1 , Antineoplásicos Fitogénicos/efectos adversos , Ratas Sprague-Dawley , Neuralgia/inducido químicamente , Neuralgia/metabolismo , Paclitaxel , Analgésicos/efectos adversos
8.
Nephrology (Carlton) ; 27(6): 484-493, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35289974

RESUMEN

AIM: Evaluate the expression of exomiRs-126, -146, and -155 in urinary exosomes of patients with T2DM and diabetic kidney disease to establish a predictive classification model with exomiRs and clinical variables in order to determine their contribution to DKD. METHODS: The study group included 92 subjects: 64 patients diagnosed with T2DM subclassified into two groups with albuminuria (T2DM with albuminuria, n = 30) and without albuminuria (TD2M, n = 34) as well as 28 healthy, non-diabetic participants. Exosomes were isolated from urine and identified by TEM and flow cytometry. Profile expression of exomiRs-126, -146 and -155 was evaluated by RT-qPCR. Data were analysed by permutational multivariate analysis of variance (PERMANOVA), similarity percentage (SIMPER), principal coordinate analysis (PCO), and canonical analysis of principal coordinates (CAP). RESULTS: T2DM patients with and without albuminuria showed higher levels of miR-155 and miR-146 compared with controls. In addition, T2DM patients with albuminuria presented a significant increase in miR-126 contrasted to controls and patients without albuminuria. PCO analysis explained 34.6% of the total variability of the data (PERMANOVA; p < .0001). Subsequently, SIMPER analysis showed that miR-146, miR-155, and miR-126 together, with some clinical parameters, contributed to 50% of the between-group significance. Finally, the CAP analysis developed showed a correct classification of 89.01% with the analysed parameters. CONCLUSION: A platform using a combination of clinical variables and exomiRs could be used to classify individuals with T2D as risk for developing DKD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , MicroARNs , Albuminuria/etiología , Albuminuria/genética , Biomarcadores , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/genética , Femenino , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo
9.
Bull Environ Contam Toxicol ; 108(1): 64-70, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33723652

RESUMEN

The lower basin of Coatzacoalcos River is one of the most polluted regions of the southern Gulf of Mexico. Organochlorine compounds, polybrominated diphenyl ethers, polycyclic aromatic hydrocarbons, and heavy metals have been registered in this region. In the present study, genotoxicity was evaluated in the blood of giant toads (Rhinella marina) from Coatzacoalcos' rural and industrial zones, and compared with laboratory toads. Determination of the frequency of micronucleus and erythrocyte nuclear abnormalities by the light microscope and cell cycle and apoptosis by flow cytometry were used as biomarkers of genotoxicity. We found more variability in micronucleus and more nuclear buds in toads from industrial zones. Also, cell cycle alterations and an increase of apoptosis in erythrocytes were found in toads from rural and industrial zones. Multivariate statistics show that the toads from the industrial zone were more affected than toads from laboratory and rural zones.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Ríos , Animales , Bufo marinus , Monitoreo del Ambiente , Eritrocitos , Hidrocarburos Policíclicos Aromáticos/análisis
10.
Mol Immunol ; 140: 127-135, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34700158

RESUMEN

The autoimmune regulator (Aire) gene in medullary thymic epithelial cells (mTECs) encodes the AIRE protein, which interacts with its partners within the nucleus. This "Aire complex" induces stalled RNA Pol II on chromatin to proceed with transcription elongation of a large set of messenger RNAs and microRNAs. Considering that RNA Pol II also transcribes long noncoding RNAs (lncRNAs), we hypothesized that Aire might be implicated in the upstream control of this RNA species. To test this, we employed a loss-of-function approach in which Aire knockout mTECs were compared to Aire wild-type mTECs for lncRNA transcriptional profiling both in vitro and in vivo model systems. RNA sequencing enables the differential expression profiling of lncRNAs when these cells adhere in vitro to thymocytes or do not adhere to them as a way to test the effect of cell adhesion. Sets of lncRNAs that are unique and that are shared in vitro and in vivo were identified. Among these, we found the Aire-dependent lncRNAs as for example, Platr28, Ifi30, Morrbid, Malat1, and Xist. This finding represents the first evidence that Aire mediates the transcription of lncRNAs in mTECs. Microarray hybridizations enabled us to observe that temporal thymocyte adhesion modulates the expression levels of such lncRNAs as Morrbid, Xist, and Fbxl12o after 36 h of adhesion. This finding shows the existence of a synergistic mechanism involving a link between thymocyte adhesion, Aire, and lncRNAs in mTECs that might be important for immune self-representation.


Asunto(s)
Células Epiteliales/metabolismo , ARN Largo no Codificante/metabolismo , Timocitos/citología , Timo/citología , Factores de Transcripción/metabolismo , Animales , Adhesión Celular , Línea Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , Sistemas de Lectura Abierta/genética , ARN Largo no Codificante/genética , Factores de Tiempo , Transcripción Genética , Proteína AIRE
11.
Micromachines (Basel) ; 12(9)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34577711

RESUMEN

In this paper, the development of a copper-chrome-based glass microheater and its integration into a Polymethylmethacrylate (PMMA) microfluidic system are presented. The process highlights the importance of an appropriate characterization, taking advantage of computer-simulated physical methods in the heat transfer process. The presented system architecture allows the integration for the development of a thermal flow sensor, in which the fluid flows through a 1 mm width × 1 mm length microchannel across a 5 mm width × 13 mm length heating surface. Using an electrothermal analysis, based on a simulation and design process, the surface heating behavior curve was analyzed to choose a heating reference point, primarily used to control the temperature point within the fluidic microsystem. The heater was characterized using the theory of electrical instrumentation, with a 7.22% error for the heating characterization and a 5.42% error for the power consumption, measured at 0.69 W at a temperature of 70 °C. Further tests, at a temperature of 115 °C, were used to observe the effects of the heat transfer through convection on the fluid and the heater surface for different flow rates, which can be used for the development of thermal flowmeters using the configuration presented in this work.

12.
Environ Monit Assess ; 193(8): 541, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34331600

RESUMEN

Mexico is one of the world's leading mercury producers and exporters. However, mercury mining is carried out using artisanal procedures, which highly impact ecosystems. In the municipality of Pinal de Amoles, Queretaro, Mexico, artisanal mercury mining (AMM) is practiced in a region that has been categorized as a Biosphere Reserve. Therefore, a holistic health risk assessment for mercury was performed in the region, including environmental monitoring (air, water, and soil) and mercury exposure in both humans (children, women, and miners) and biota (plants, rodents, and worms). The atmospheric mercury determination was carried out using the JEROME® J405 analyzer, whereas total mercury in environmental and biological samples was determined by atomic absorption spectrophotometry/cold vapor. Results showed that mercury concentrations in the environmental and biological matrices exceeded their respective reference values. These results demonstrate the direct influence of AMM in the increasing levels of mercury in all the components of the studied ecosystem. Therefore, comprehensive intervention strategies must be implemented to reduce and prevent human health and ecological risks due to the presence of mercury. In this regard, the Minamata Convention for mercury control should include biomonitoring programs not only for humans but also for critical ecological receptors in polluted ecosystems.


Asunto(s)
Mercurio , Ecosistema , Monitoreo del Ambiente , Oro , Mercurio/análisis , México , Minería , Medición de Riesgo
13.
Ecotoxicol Environ Saf ; 208: 111493, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33120261

RESUMEN

In San Luis Potosí, Mexico, the exploitation of minerals has historically been carried out as an activity that has left in its path environmental liabilities, with high concentrations of heavy metals. These metals have undergone weathering by rain and wind and have moved closer to inhabited locations as is the case of Cerro de San Pedro (CSP) and Villa de la Paz (VDP). The objective of this study is to show the biological alteration of soils due to the presence of heavy metals and metalloids like Cadmium (Cd), Copper (Cu), Lead (Pb) and Arsenic (As) and to find the relationship between contamination and risk indexes. Soil samples were obtained from sites with historical records of mining activity and their surroundings. Several analyses were performed, such as pH levels, organic matter, electrical conductivity, clays, heavy metals and As. Moreover, Community Level Physiological profiling (CLPP) were conducted. The obtained evidence showed high levels of contamination by As and heavy metals in both sites (CSP: 6485.1 mg/Kg of Pb and pH of 4.4; VDP: 7188.2 mg/Kg of As and pH of 7.8). According to the Metal Pollution Index (MPI), 607.0 in CSP and 1050.5 in VDP, presented a high environmental risk, apart from, risk to human health (SQGQI) 35.8 in CSP and 131.5 in VDP. At the same time, CLPPs showed that microbiological communities were selective in taking up substrate groups, in the following order: Carbohydrates > Polymers > Carboxylic acids > Amino acids > Amines/Amides. However, a positive correlation in CSP was only found between both indexes and Amines/Amides (r = 0.46, p < 0.05), and in VDP the D-Galactonic acid-γ-Lactone with the MPI (r = 0.49, p < 0.05), and with the SQGQI (r = 0.45, p < 0.05). Although this behavior was not homogeneous, it was possible to find negative correlations between both indexes and the AWCD with other substrates, influenced by the physicochemical characteristics presented in each studied site. Consequently, according to our findings, a combined effect between the physicochemical characteristics, As, and heavy metals took place, on the metabolic activity, causing alterations to soil functions.


Asunto(s)
Bacterias/metabolismo , Carbono/metabolismo , Metaloides/metabolismo , Metales Pesados/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , México , Minería
14.
Micromachines (Basel) ; 12(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33374994

RESUMEN

The yeast Saccharomyces cerevisiae is one of the most basic model organisms for studies of aging and other phenomena such as division strategies. These organisms have been typically studied with the use of microfluidic devices to keep cells trapped while under a flow of fresh media. However, all of the existing devices trap cells mechanically, subjecting them to pressures that may affect cell physiology. There is evidence mechanical pressure affects growth rate and the movement of intracellular components, so it is quite possible that it affects other physiological aspects such as aging. To allow studies with the lowest influence of mechanical pressure, we designed and fabricated a device that takes advantage of the slipstreaming effect. In slipstreaming, moving fluids that encounter a barrier flow around it forming a pressure gradient behind it. We trap mother cells in this region and force daughter cells to be in the negative pressure gradient region so that they are taken away by the flow. Additionally, this device can be fabricated using low resolution lithography techniques, which makes it less expensive than devices that require photolithography masks with resolution under 5 µm. With this device, it is possible to measure some of the most interesting aspects of yeast dynamics such as growth rates and Replicative Life Span. This device should allow future studies to eliminate pressure bias as well as extending the range of labs that can do these types of measurements.

15.
Front Immunol ; 11: 1039, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547551

RESUMEN

Aire is a transcriptional controller in medullary thymic epithelial cells (mTECs) modulating a set of peripheral tissue antigens (PTAs) and non-PTA mRNAs as well as miRNAs. Even miRNAs exerting posttranscriptional control of mRNAs in mTECs, the composition of miRNA-mRNA networks may differ. Under reduction in Aire expression, networks exhibited greater miRNA diversity controlling mRNAs. Variations in the number of 3'UTR binding sites of Aire-dependent mRNAs may represent a crucial factor that influence the miRNA interaction. To test this hypothesis, we analyzed through bioinformatics the length of 3'UTRs of a large set of Aire-dependent mRNAs. The data were obtained from existing RNA-seq of mTECs of wild type or Aire-knockout (KO) mice. We used computational algorithms as FASTQC, STAR and HTSEQ for sequence alignment and counting reads, DESEQ2 for the differential expression, 3USS for the alternative 3'UTRs and TAPAS for the alternative polyadenylation sites. We identified 152 differentially expressed mRNAs between these samples comprising those that encode PTAs as well as transcription regulators. In Aire KO mTECs, most of these mRNAs featured an increase in the length of their 3'UTRs originating additional miRNA binding sites and new miRNA controllers. Results from the in silico analysis were statistically significant and the predicted miRNA-mRNA interactions were thermodynamically stable. Even with no in vivo or in vitro experiments, they were adequate to show that lack of Aire in mTECs might favor the downregulation of PTA mRNAs and transcription regulators via miRNA control. This could unbalance the overall transcriptional activity in mTECs and thus the self-representation.


Asunto(s)
Regiones no Traducidas 3' , ARN Mensajero/genética , Timo/metabolismo , Factores de Transcripción/genética , Algoritmos , Animales , Antígenos/genética , Sitios de Unión/genética , Simulación por Computador , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , MicroARNs/genética , Poliadenilación/genética , Poliendocrinopatías Autoinmunes/genética , RNA-Seq , Alineación de Secuencia , Timo/citología , Timo/inmunología , Factores de Transcripción/deficiencia , Proteína AIRE
16.
Ecotoxicol Environ Saf ; 197: 110568, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32283412

RESUMEN

Mining environmental liabilities (MEL) in San Luis Potosi are the result of more than 450 years of mining activity, which has contaminated the soil mainly with arsenic (As) and lead (Pb) in several areas. Risk assessments are used to estimate the possibility of the occurrence of adverse effects on human health or on ecological receptors; and the most accessible way of performing them is through probabilistic estimates such as the Latin Hypercube Sampling (LHS) model. Therefore, the aim of this study was to carry out an Integrated Probabilistic Environmental Risk Assessment (IPERA) for the estimation of health risks in infants and rodents. The mean concentrations of As and Pb in soil were significantly higher (p<0.05) in all contaminated sites than in their respective reference sites. Villa de la Paz was the site with the highest mean concentration of As (1374 mg/kg), while Charcas was the one with the highest level of Pb (12,929 mg/kg). The Hazard Quotient (HQ) was calculated and Villa de la Paz had the highest values of As in both rodents (11.994) and children (39.32), and Charcas showed the highest values of Pb in both (24.971 and 31.668 for rodents and children respectively). The cumulative hazard Index (HI) reveals there is a very significant health risk due to As and Pb exposure for both rodents and children in contaminated areas of these mining communities.


Asunto(s)
Arsénico/análisis , Exposición a Riesgos Ambientales/análisis , Plomo/análisis , Minería , Contaminantes del Suelo/análisis , Animales , Niño , Exposición a Riesgos Ambientales/efectos adversos , Humanos , México , Medición de Riesgo , Roedores
17.
Biosensors (Basel) ; 9(4)2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31689950

RESUMEN

In this paper, we present a non-fluidic microsystem for the simultaneous visualization and electrochemical evaluation of confined, growing bacteria on solid media. Using a completely automated platform, real-time monitoring of bacterial and image-based computer characterization of growth were performed. Electrochemical tests, using Escherichia coli K-12 as the model microorganism, revealed the development of a faradaic process at the bacteria-microelectrode interface inside the microsystem, as implied by cyclic voltammetry and electrochemical impedance spectrometry measurements. The electrochemical information was used to determine the moment in which bacteria colonized the electrode-enabled area of the microsystem. This microsystem shows potential advantages for long-term electrochemical monitoring of the extracellular environment of cell culture and has been designed using readily available technologies that can be easily integrated in routine protocols. Complementarily, these methods can help elucidate fundamental questions of the electron transfer of bacterial cultures and are potentially feasible to be integrated into current characterization techniques.


Asunto(s)
Automatización , Técnicas Biosensibles , Células Inmovilizadas , Técnicas Electroquímicas , Escherichia coli K12/aislamiento & purificación , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Microelectrodos
18.
Ecotoxicol Environ Saf ; 180: 403-411, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31108417

RESUMEN

The delta of the Coatzacoalcos river is a priority region for the biological conservation in the Gulf of Mexico. Environmental studies in the area have detected a complex mixture of contaminants where the presence of Persistent organic compounds (POPs) is highlighted. Deoxyribonucleic acid (DNA) integrity of biological populations are global concerns due to their ecological implications. The purpose of this study was to measure the exposure to POPs and DNA damage in nine species residing in the Coatzacoalcos river classified by taxonomic group, type of habitat and feeding habits. Total POPs concentrations (minimum and maximum) detected for all species were from 22.7 to 24,662.1 ng/g l.w; and the values of DNA damage (minimum and maximum) varied from 0.7 to 20.5 and from 6.5 to 56.8 µm (Olive tail moment and tail length respectively). Broadly speaking, reptiles, species residing in the wetland and the ones with a carnivorous diet showed higher levels of POPs and DNA damage. This study provides us with a baseline of the state of POPs contamination and shows the degree of environmental stress to which the different components of the ecosystem of the Coatzacoalcos river delta are subject to.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Daño del ADN , Monitoreo del Ambiente/métodos , Compuestos Orgánicos/toxicidad , Ríos/química , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/genética , Golfo de México , México , Compuestos Orgánicos/análisis , Contaminantes Químicos del Agua/análisis
19.
Crit Care ; 23(1): 113, 2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30961634

RESUMEN

BACKGROUND: Neutrophil extracellular traps (NETs) are innate defense mechanisms that are also implicated in the pathogenesis of organ dysfunction. However, the role of NETs in pediatric sepsis is unknown. METHODS: Infant (2 weeks old) and adult (6 weeks old) mice were submitted to sepsis by intraperitoneal (i.p.) injection of bacteria suspension or lipopolysaccharide (LPS). Neutrophil infiltration, bacteremia, organ injury, and concentrations of cytokine, NETs, and DNase in the plasma were measured. Production of reactive oxygen and nitrogen species and release of NETs by neutrophils were also evaluated. To investigate the functional role of NETs, mice undergoing sepsis were treated with antibiotic plus rhDNase and the survival, organ injury, and levels of inflammatory markers and NETs were determined. Blood samples from pediatric and adult sepsis patients were collected and the concentrations of NETs measured. RESULTS: Infant C57BL/6 mice subjected to sepsis or LPS-induced endotoxemia produced significantly higher levels of NETs than the adult mice. Moreover, compared to that of the adult mice, this outcome was accompanied by increased organ injury and production of inflammatory cytokines. The increased NETs were associated with elevated expression of Padi4 and histone H3 citrullination in the neutrophils. Furthermore, treatment of infant septic mice with rhDNase or a PAD-4 inhibitor markedly attenuated sepsis. Importantly, pediatric septic patients had high levels of NETs, and the severity of pediatric sepsis was positively correlated with the level of NETs. CONCLUSION: This study reveals a hitherto unrecognized mechanism of pediatric sepsis susceptibility and suggests that NETs represents a potential target to improve clinical outcomes of sepsis.


Asunto(s)
Trampas Extracelulares/microbiología , Sepsis/terapia , Animales , Carga Bacteriana/métodos , Brasil , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL/sangre , Ratones Endogámicos C57BL/microbiología , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/patología , Sepsis/mortalidad , Sepsis/patología
20.
Sci Total Environ ; 651(Pt 1): 1236-1242, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30360255

RESUMEN

Persistent Organic Pollutants (POPs) are stable organic chemicals that represent a potential risk for ecosystems due to their high toxicity, persistence and biomagnification through food chains. Bioindicators in ecosystems have emerged to assess the effect of environmental pollutants. Earthworms are some of the most common bioindicator organisms in terrestrial ecosystems. The main objective of this study was to evaluate the geontoxicity of POP exposure in wild earthworms captured at different levels of urbanization throughout the lower basin of the Coatzacoalcos River (industrial, urban and rural areas). POP soil and earthworm tissue concentrations were measured via Gas-Mass Chromatography, and earthworm DNA damage was evaluated through the comet assay. The greatest concentrations of ΣPOPs, DDT and HCH were found in soil from industrial sites, followed by urban and rural areas (504.68, 383.10, 298.16; 22.6, 4.6, 2.6 and 433.7, 364, 255.6 mg/kg, respectively). Unlike other pollutants, mean ΣPCBs values were highest for industrial soil samples, followed by those from rural and urban areas (41.10, 33.97 and 12.44 mg/kg respectively). For all earthworm tissue POP analyses, the highest concentrations were found in individuals from industrial sites, followed by the urban and rural areas. Furthermore, the highest levels of DNA damage were registered in the industrial area, followed by the urban and rural areas. These assays suggest a strong links among regional soil contamination, POPs bioavailability and the potential risk of detrimental health effects for organisms that inhabit surface soil (soil life). Earthworms contribute vital ecosystem services that could be affected by these results. This work provides evidence of the potential ecological risk that exists in the Lower Basin of the Coatzacoalcos River.


Asunto(s)
Daño del ADN , Exposición a Riesgos Ambientales , Oligoquetos/efectos de los fármacos , Contaminantes del Suelo/efectos adversos , Animales , Monitoreo del Ambiente , México , Oligoquetos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA