Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
EBioMedicine ; 103: 105124, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701619

RESUMEN

BACKGROUND: PolyQ diseases are autosomal dominant neurodegenerative disorders caused by the expansion of CAG repeats. While of slow progression, these diseases are ultimately fatal and lack effective therapies. METHODS: A high-throughput chemical screen was conducted to identify drugs that lower the toxicity of a protein containing the first exon of Huntington's disease (HD) protein huntingtin (HTT) harbouring 94 glutamines (Htt-Q94). Candidate drugs were tested in a wide range of in vitro and in vivo models of polyQ toxicity. FINDINGS: The chemical screen identified the anti-leprosy drug clofazimine as a hit, which was subsequently validated in several in vitro models. Computational analyses of transcriptional signatures revealed that the effect of clofazimine was due to the stimulation of mitochondrial biogenesis by peroxisome proliferator-activated receptor gamma (PPARγ). In agreement with this, clofazimine rescued mitochondrial dysfunction triggered by Htt-Q94 expression. Importantly, clofazimine also limited polyQ toxicity in developing zebrafish and neuron-specific worm models of polyQ disease. INTERPRETATION: Our results support the potential of repurposing the antimicrobial drug clofazimine for the treatment of polyQ diseases. FUNDING: A full list of funding sources can be found in the acknowledgments section.


Asunto(s)
Clofazimina , Modelos Animales de Enfermedad , Proteína Huntingtina , Leprostáticos , PPAR gamma , Péptidos , Pez Cebra , Clofazimina/farmacología , PPAR gamma/metabolismo , PPAR gamma/genética , Animales , Humanos , Péptidos/farmacología , Leprostáticos/farmacología , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo
2.
Biol Psychiatry ; 94(4): 341-351, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36958377

RESUMEN

BACKGROUND: Schizophrenia (SCZ) is caused by an interplay of polygenic risk and environmental factors, which may alter regulators of gene expression leading to pathogenic misexpression of SCZ risk genes. The CPEB family of RNA-binding proteins (CPEB1-4) regulates translation of target RNAs (approximately 40% of overall genes). We previously identified CPEB4 as a key dysregulated translational regulator in autism spectrum disorder (ASD) because its neuronal-specific microexon (exon 4) is mis-spliced in ASD brains, causing underexpression of numerous ASD risk genes. The genetic factors and pathogenic mechanisms shared between SCZ and ASD led us to hypothesize CPEB4 mis-splicing in SCZ leading to underexpression of multiple SCZ-related genes. METHODS: We performed MAGMA-enrichment analysis on Psychiatric Genomics Consortium genome-wide association study data and analyzed RNA sequencing data from the PsychENCODE Consortium. Reverse transcriptase polymerase chain reaction and Western blot were performed on postmortem brain tissue, and the presence/absence of antipsychotics was assessed through toxicological analysis. Finally, mice with mild overexpression of exon 4-lacking CPEB4 (CPEB4Δ4) were generated and analyzed biochemically and behaviorally. RESULTS: First, we found enrichment of SCZ-associated genes for CPEB4-binder transcripts. We also found decreased usage of CPEB4 microexon in SCZ probands, which was correlated with decreased protein levels of CPEB4-target SCZ-associated genes only in antipsychotic-free individuals. Interestingly, differentially expressed genes fit those reported for SCZ, specifically in the SCZ probands with decreased CPEB4-microexon inclusion. Finally, we demonstrated that mice with mild overexpression of CPEB4Δ4 showed decreased protein levels of CPEB4-target SCZ genes and SCZ-linked behaviors. CONCLUSIONS: We identified aberrant CPEB4 splicing and downstream misexpression of SCZ risk genes as a novel etiological mechanism in SCZ.


Asunto(s)
Antipsicóticos , Trastorno del Espectro Autista , Esquizofrenia , Animales , Ratones , Antipsicóticos/uso terapéutico , Trastorno del Espectro Autista/genética , Encéfalo/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Esquizofrenia/genética , Esquizofrenia/tratamiento farmacológico
3.
4.
Sci Transl Med ; 13(613): eabe7104, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34586830

RESUMEN

Huntington's disease (HD) is a hereditary neurodegenerative disorder of the basal ganglia for which disease-modifying treatments are not yet available. Although gene-silencing therapies are currently being tested, further molecular mechanisms must be explored to identify druggable targets for HD. Cytoplasmic polyadenylation element binding proteins 1 to 4 (CPEB1 to CPEB4) are RNA binding proteins that repress or activate translation of CPE-containing transcripts by shortening or elongating their poly(A) tail. Here, we found increased CPEB1 and decreased CPEB4 protein in the striatum of patients and mouse models with HD. This correlated with a reprogramming of polyadenylation in 17.3% of the transcriptome, markedly affecting neurodegeneration-associated genes including PSEN1, MAPT, SNCA, LRRK2, PINK1, DJ1, SOD1, TARDBP, FUS, and HTT and suggesting a new molecular mechanism in neurodegenerative disease etiology. We found decreased protein content of top deadenylated transcripts, including striatal atrophy­linked genes not previously related to HD, such as KTN1 and the easily druggable SLC19A3 (the ThTr2 thiamine transporter). Mutations in SLC19A3 cause biotin-thiamine­responsive basal ganglia disease (BTBGD), a striatal disorder that can be treated with a combination of biotin and thiamine. Similar to patients with BTBGD, patients with HD demonstrated decreased thiamine in the cerebrospinal fluid. Furthermore, patients and mice with HD showed decreased striatal concentrations of thiamine pyrophosphate (TPP), the metabolically active form of thiamine. High-dose biotin and thiamine treatment prevented TPP deficiency in HD mice and attenuated the radiological, neuropathological, and motor HD-like phenotypes, revealing an easily implementable therapy that might benefit patients with HD.


Asunto(s)
Enfermedad de Huntington , Poliadenilación , Factores de Transcripción/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Proteínas de Transporte de Membrana , Transcriptoma
5.
Cells ; 10(7)2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34208834

RESUMEN

Ischemic stroke is the second cause of mortality and the first cause of long-term disability constituting a serious socioeconomic burden worldwide. Approved treatments include thrombectomy and rtPA intravenous administration, which, despite their efficacy in some cases, are not suitable for a great proportion of patients. Glial cell-related therapies are progressively overcoming inefficient neuron-centered approaches in the preclinical phase. Exploiting the ability of microglia to naturally switch between detrimental and protective phenotypes represents a promising therapeutic treatment, in a similar way to what happens with astrocytes. However, the duality present in many of the roles of these cells upon ischemia poses a notorious difficulty in disentangling the precise pathways to target. Still, promoting M2/A2 microglia/astrocyte protective phenotypes and inhibiting M1/A1 neurotoxic profiles is globally rendering promising results in different in vivo models of stroke. On the other hand, described oligodendrogenesis after brain ischemia seems to be strictly beneficial, although these cells are the less studied players in the stroke paradigm and negative effects could be described for oligodendrocytes in the next years. Here, we review recent advances in understanding the precise role of mentioned glial cell types in the main pathological events of ischemic stroke, including inflammation, blood brain barrier integrity, excitotoxicity, reactive oxygen species management, metabolic support, and neurogenesis, among others, with a special attention to tested therapeutic approaches.


Asunto(s)
Isquemia Encefálica/terapia , Neuroglía/fisiología , Daño por Reperfusión/terapia , Animales , Barrera Hematoencefálica/patología , Humanos , Neurogénesis , Estrés Oxidativo
6.
Acta Neuropathol ; 142(1): 159-177, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33934221

RESUMEN

Tauopathies, including Alzheimer's disease (AD) and frontotemporal lobar degeneration with Tau pathology (FTLD-tau), are a group of neurodegenerative disorders characterized by Tau hyperphosphorylation. Post-translational modifications of Tau such as phosphorylation and truncation have been demonstrated to be an essential step in the molecular pathogenesis of these tauopathies. In this work, we demonstrate the existence of a new, human-specific truncated form of Tau generated by intron 12 retention in human neuroblastoma cells and, to a higher extent, in human RNA brain samples, using qPCR and further confirming the results on a larger database of human RNA-seq samples. Diminished protein levels of this new Tau isoform are found by Westernblotting in Alzheimer's patients' brains (Braak I n = 3; Braak II n = 6, Braak III n = 3, Braak IV n = 1, and Braak V n = 10, Braak VI n = 8) with respect to non-demented control subjects (n = 9), suggesting that the lack of this truncated isoform may play an important role in the pathology. This new Tau isoform exhibits similar post-transcriptional modifications by phosphorylation and affinity for microtubule binding, but more interestingly, is less prone to aggregate than other Tau isoforms. Finally, we present evidence suggesting this new Tau isoform could be linked to the inhibition of GSK3ß, which would mediate intron 12 retention by modulating the serine/arginine rich splicing factor 2 (SRSF2). Our results show the existence of an important new isoform of Tau and suggest that further research on this less aggregation-prone Tau may help to develop future therapies for Alzheimer's disease and other tauopathies.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Tauopatías/genética , Proteínas tau/química , Proteínas tau/genética , Empalme Alternativo , Línea Celular , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Intrones/genética , Microtúbulos/metabolismo , Neuroblastoma/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Factores de Empalme Serina-Arginina/genética , Tauopatías/metabolismo , Proteínas tau/metabolismo
7.
Cell Rep ; 35(2): 108980, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852844

RESUMEN

The huntingtin (HTT) protein transports various organelles, including vesicles containing neurotrophic factors, from embryonic development throughout life. To better understand how HTT mediates axonal transport and why this function is disrupted in Huntington's disease (HD), we study vesicle-associated HTT and find that it is dimethylated at a highly conserved arginine residue (R118) by the protein arginine methyltransferase 6 (PRMT6). Without R118 methylation, HTT associates less with vesicles, anterograde trafficking is diminished, and neuronal death ensues-very similar to what occurs in HD. Inhibiting PRMT6 in HD cells and neurons exacerbates mutant HTT (mHTT) toxicity and impairs axonal trafficking, whereas overexpressing PRMT6 restores axonal transport and neuronal viability, except in the presence of a methylation-defective variant of mHTT. In HD flies, overexpressing PRMT6 rescues axonal defects and eclosion. Arginine methylation thus regulates HTT-mediated vesicular transport along the axon, and increasing HTT methylation could be of therapeutic interest for HD.


Asunto(s)
Transporte Axonal/genética , Epigénesis Genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferasas/genética , Vesículas Transportadoras/metabolismo , Secuencia de Aminoácidos , Animales , Arginina/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Muerte Celular , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Metilación , Ratones , Ratones Transgénicos , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Neuronas/metabolismo , Neuronas/patología , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Vesículas Transportadoras/genética , Vesículas Transportadoras/patología
8.
Brain ; 144(7): 2009-2023, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-33725094

RESUMEN

Correction of mis-splicing events is a growing therapeutic approach for neurological diseases such as spinal muscular atrophy or neuronal ceroid lipofuscinosis 7, which are caused by splicing-affecting mutations. Mis-spliced effector genes that do not harbour mutations are also good candidate therapeutic targets in diseases with more complex aetiologies such as cancer, autism, muscular dystrophies or neurodegenerative diseases. Next-generation RNA sequencing (RNA-seq) has boosted investigation of global mis-splicing in diseased tissue to identify such key pathogenic mis-spliced genes. Nevertheless, while analysis of tumour or dystrophic muscle biopsies can be informative on early stage pathogenic mis-splicing, for neurodegenerative diseases, these analyses are intrinsically hampered by neuronal loss and neuroinflammation in post-mortem brains. To infer splicing alterations relevant to Huntington's disease pathogenesis, here we performed intersect-RNA-seq analyses of human post-mortem striatal tissue and of an early symptomatic mouse model in which neuronal loss and gliosis are not yet present. Together with a human/mouse parallel motif scan analysis, this approach allowed us to identify the shared mis-splicing signature triggered by the Huntington's disease-causing mutation in both species and to infer upstream deregulated splicing factors. Moreover, we identified a plethora of downstream neurodegeneration-linked mis-spliced effector genes that-together with the deregulated splicing factors-become new possible therapeutic targets. In summary, here we report pathogenic global mis-splicing in Huntington's disease striatum captured by our new intersect-RNA-seq approach that can be readily applied to other neurodegenerative diseases for which bona fide animal models are available.


Asunto(s)
Empalme Alternativo/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Factores de Empalme de ARN/genética , Animales , Cuerpo Estriado/patología , Humanos , Enfermedad de Huntington/patología , Ratones , Análisis de Secuencia de ARN/métodos
9.
Brain ; 143(7): 2207-2219, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32533168

RESUMEN

Huntington's disease and X-linked dystonia parkinsonism are two monogenic basal ganglia model diseases. Huntington's disease is caused by a polyglutamine-encoding CAG repeat expansion in the Huntingtin (HTT) gene leading to several toxic interactions of both the expanded CAG-containing mRNA and the polyglutamine-containing protein, while X-linked dystonia parkinsonism is caused by a retrotransposon insertion in the TAF1 gene, which decreases expression of this core scaffold of the basal transcription factor complex TFIID. SRSF6 is an RNA-binding protein of the serine and arginine-rich (SR) protein family that interacts with expanded CAG mRNA and is sequestered into the characteristic polyglutamine-containing inclusion bodies of Huntington's disease brains. Here we report decreased levels of the SRSF6 interactor and regulator SREK1-another SR protein involved in RNA processing-which includes TAF1 as one of its targets. This led us to hypothesize that Huntington's disease and X-linked dystonia parkinsonism pathogeneses converge in TAF1 alteration. We show that diminishing SRSF6 through RNA interference in human neuroblastoma cells leads to a decrease in SREK1 levels, which, in turn, suffices to cause diminished TAF1 levels. We also observed decreased SREK1 and TAF1 levels in striatum of Huntington's disease patients and transgenic model mice. We then generated mice with neuronal transgenic expression of SREK1 (TgSREK1 mice) that, interestingly, showed transcriptomic alterations complementary to those in Huntington's disease mice. Most importantly, by combining Huntington's disease and TgSREK1 mice we verify that SREK1 overexpression corrects TAF1 deficiency and attenuates striatal atrophy and motor phenotype of Huntington's disease mice. Our results therefore demonstrate that altered RNA processing upon SREK1 dysregulation plays a key role in Huntington's disease pathogenesis and pinpoint TAF1 as a likely general determinant of selective vulnerability of the striatum in multiple neurological disorders.


Asunto(s)
Trastornos Distónicos/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Histona Acetiltransferasas/metabolismo , Enfermedad de Huntington/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Animales , Trastornos Distónicos/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Enfermedad de Huntington/genética , Ratones , Ratones Transgénicos , Fosfoproteínas/genética , Factores de Empalme Serina-Arginina/genética
10.
Glia ; 68(12): 2471-2485, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32515854

RESUMEN

Ischemic stroke is a major cause of death and the first leading cause of long-term disability worldwide. The only therapeutic strategy available to date is reperfusion and not all the patients are suitable for this treatment. Blood flow blockage or reduction leads to considerable brain damage, affecting both gray and white matter. The detrimental effects of ischemia have been studied extensively in the former but not in the latter. Previous reports indicate that preservation of white matter integrity reduces deleterious effect of ischemia on the brain. Oligodendrocytes are sensitive to ischemic damage, however, some reports demonstrate that oligodendrogenesis occurs after ischemia. These glial cells have a complex cytoskeletal network, including tau, that plays a key role to proper myelination. 4R-Tau/3R-Tau, which differ in the presence/absence of Exon 10, are found in oligodendrocytes; but the precise role of each isoform is not understood. Using permanent middle cerebral artery occlusion model and immunofluorescence, we demonstrate that cerebral ischemia induces an increase in 3R-Tau versus 4R-Tau in oligodendrocytes in the damaged area. In addition, cellular distribution of Tau undergoes a change after ischemia, with some oligodendrocytic processes showing positive staining for 3R-Tau. This occurs simultaneously with the amelioration of neurological damage in ischemic rats. We propose that ischemia triggers an endogenous mechanism involving 3R-Tau, that induces colonization of the ischemic damaged area by oligodendrocytes in an attempt to myelinate-injured axons. Understanding the molecular mechanism of this phenomenon could pave the way for the design of therapeutic strategies that exploit glial cells for the treatment of ischemia.


Asunto(s)
Isquemia Encefálica , Animales , Encéfalo , Humanos , Oligodendroglía , Isoformas de Proteínas , Ratas , Sustancia Blanca
11.
Brain Pathol ; 30(1): 120-136, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31264746

RESUMEN

Huntington's disease (HD) is an inherited progressive neurodegenerative disease characterized by brain atrophy particularly in the striatum that produces motor impairment, and cognitive and psychiatric disturbances. Multiple pathogenic mechanisms have been proposed including dysfunctions in neurotrophic support and calpain-overactivation, among others. Kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is an essential mediator of neurotrophin signaling. In adult brain, Kidins220 presents two main isoforms that differ in their carboxy-terminal length and critical protein-protein interaction domains. These variants are generated through alternative terminal exon splicing of the conventional exon 32 (Kidins220-C32) and the recently identified exon 33 (Kidins220-C33). The lack of domains encoded by exon 32 involved in key neuronal functions, including those controlling neurotrophin pathways, pointed to Kidins220-C33 as a form detrimental for neurons. However, the functional role of Kidins220-C33 in neurodegeneration or other pathologies, including HD, has not been explored. In the present work, we discover an unexpected selective downregulation of Kidins220-C33, in the striatum of HD patients, as well as in the R6/1 HD mouse model starting at early symptomatic stages. These changes are C33-specific as Kidins220-C32 variant remains unchanged. We also find the early decrease in Kidins220-C33 levels takes place in neurons, suggesting an unanticipated neuroprotective role for this isoform. Finally, using ex vivo assays and primary neurons, we demonstrate that Kidins220-C33 is downregulated by mechanisms that depend on the activation of the protease calpain. Altogether, these results strongly suggest that calpain-mediated Kidins220-C33 proteolysis modulates onset and/or progression of HD.


Asunto(s)
Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Adulto , Anciano , Empalme Alternativo , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Exones/genética , Femenino , Hipocampo/metabolismo , Humanos , Enfermedad de Huntington/patología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Unión Proteica , Isoformas de Proteínas/genética , Transducción de Señal
12.
Nature ; 560(7719): 441-446, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30111840

RESUMEN

Common genetic contributions to autism spectrum disorder (ASD) reside in risk gene variants that individually have minimal effect sizes. As environmental factors that perturb neurodevelopment also underlie idiopathic ASD, it is crucial to identify altered regulators that can orchestrate multiple ASD risk genes during neurodevelopment. Cytoplasmic polyadenylation element binding proteins 1-4 (CPEB1-4) regulate the translation of specific mRNAs by modulating their poly(A)-tails and thereby participate in embryonic development and synaptic plasticity. Here we find that CPEB4 binds transcripts of most high-confidence ASD risk genes. The brains of individuals with idiopathic ASD show imbalances in CPEB4 transcript isoforms that result from decreased inclusion of a neuron-specific microexon. In addition, 9% of the transcriptome shows reduced poly(A)-tail length. Notably, this percentage is much higher for high-confidence ASD risk genes, correlating with reduced expression of the protein products of ASD risk genes. An equivalent imbalance in CPEB4 transcript isoforms in mice mimics the changes in mRNA polyadenylation and protein expression of ASD risk genes and induces ASD-like neuroanatomical, electrophysiological and behavioural phenotypes. Together, these data identify CPEB4 as a regulator of ASD risk genes.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Predisposición Genética a la Enfermedad/genética , Poliadenilación , Empalme del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Exones/genética , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Fenotipo , Unión Proteica , ARN Mensajero/química , ARN Mensajero/genética , Transcriptoma
13.
FASEB J ; 32(6): 3020-3032, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29401585

RESUMEN

The disturbances of cellular proteostasis caused by the alteration in the ubiquitin-proteasome system (UPS) have been proposed as a common mechanism underlying several neural pathologies that involve a neuroinflammatory process. As we have previously reported that the nucleotide receptor P2Y purinoceptor 2 (P2Y2R) regulates the proteasomal catalytic activities, we wonder whether this receptor is involved in the UPS disturbances associated with the neuroinflammation process. With the use of mice expressing a UPS reporter [mice expressing the UPS reporter ubiquitinG76V-green fluorescent protein (UbGFP mice)], we found that LPS-induced acute neuroinflammation status causes a UPS impairment in astrocytes and microglial cells by a mechanism dependent on P2Y2R. In this line, LPS-treated double transgenic UbGFP; P2Y2R-/- mice did not present a UPS impairment in astrocytes or a social interaction deficit as severe as that observed in LPS-treated UbGFP mice. In vivo administration of selective P2Y2R agonist diuridine tetraphosphate reversed the UPS impairment completely in astrocytes and partially in microglial cells, promoting increased expression of the proteasomal ß5 subunit by a mechanism dependent on the Src/PI3K/ERK pathway. Altogether, our results suggest that LPS induces unbalanced proteostasis in astrocytes by blocking P2Y2R. Finally, our findings point to the design of selective P2Y2R agonist drugs as a new therapeutic approach to treat the neuroinflammatory status.-De Diego García, L., Sebastián-Serrano, Á., Hernández, I. H., Pintor, J., Lucas, J. J., Díaz-Hernández, M. The regulation of proteostasis in glial cells by nucleotide receptors is key in acute neuroinflammation.


Asunto(s)
Astrocitos/metabolismo , Sistema de Señalización de MAP Quinasas , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteostasis , Receptores Purinérgicos P2Y2/metabolismo , Ubiquitina/metabolismo , Animales , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Ratones Noqueados , Complejo de la Endopetidasa Proteasomal/genética , Receptores Purinérgicos P2Y2/genética , Conducta Social , Ubiquitina/genética
14.
Acta Neuropathol ; 134(6): 839-850, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28861715

RESUMEN

Activating transcription factor-5 (ATF5) is a stress-response transcription factor induced upon different cell stressors like fasting, amino-acid limitation, cadmium or arsenite. ATF5 is also induced, and promotes transcription of anti-apoptotic target genes like MCL1, during the unfolded protein response (UPR) triggered by endoplasmic reticulum stress. In the brain, high ATF5 levels are found in gliomas and also in neural progenitor cells, which need to decrease their ATF5 levels for differentiation into mature neurons or glia. This initially led to believe that ATF5 is not expressed in adult neurons. More recently, we reported basal neuronal ATF5 expression in adult mouse brain and its neuroprotective induction during UPR in a mouse model of status epilepticus. Here we aimed to explore whether ATF5 is also expressed by neurons in human brain both in basal conditions and in Huntington's disease (HD), where UPR has been described to be partially impaired due to defective ATF6 processing. Apart from confirming that ATF5 is present in human adult neurons, here we report accumulation of ATF5 within the characteristic polyglutamine-containing neuronal nuclear inclusions in brains of HD patients and mice. This correlates with decreased levels of soluble ATF5 and of its antiapoptotic target MCL1. We then confirmed the deleterious effect of ATF5 deficiency in a Caenorhabditis elegans model of polyglutamine-induced toxicity. Finally, ATF5 overexpression attenuated polyglutamine-induced apoptosis in a cell model of HD. These results reflect that decreased ATF5 in HD-probably secondary to sequestration into inclusions-renders neurons more vulnerable to mutant huntingtin-induced apoptosis and that ATF5-increasing interventions might have therapeutic potential for HD.


Asunto(s)
Factores de Transcripción Activadores/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Enfermedad de Huntington/metabolismo , Cuerpos de Inclusión/metabolismo , Neuronas/metabolismo , Péptidos/metabolismo , Animales , Apoptosis , Caenorhabditis elegans , Línea Celular Tumoral , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/fisiología , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/patología , Cuerpos de Inclusión/patología , Ratones Transgénicos , Neuronas/patología , Neuroprotección/fisiología
15.
Brain Pathol ; 26(6): 772-778, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27529534

RESUMEN

Huntington's disease (HD) is caused by a CAG-repeat encoding a polyglutamine (polyQ) tract in the huntingtin protein. There is plenty of evidence of polyQ-driven toxicity. However, CAG repeat RNA-driven alteration of splicing has recently been proposed in analogy to CUG-repeat diseases. Here we review the reported alteration of the CAG-repeat associated splicing factor SRSF6 in brains of HD patients and mouse models and how this correlates with altered splicing of, at least, two microtubule-associated proteins in HD, namely MAPT (tau) and MAP2. Regarding tau, altered splicing of exon 10 has been reported, along with increased levels and 4R/3R-tau ratio and detection of tau in a new nuclear rod-shaped histopathological hallmark termed tau nuclear rod (TNR) or tau nuclear indentation (TNI). These findings, together with an attenuation of HD phenotype in R6/1 mice with tau deficiency and subsequent studies showing increased phosphorylation in mouse models and increased levels in CSF of patients, has led to proposing HD as a tauopathy. Regarding MAP2, an increase in its juvenile form and a decrease in total MAP2 together with redistribution from dendrites to soma is observed in HD patients, which may contribute to the dendritic atrophy in HD. Furthermore, MAP2 positive structures filling nuclear indentations have occasionally been found and co-localized with tau. Therefore, altered MAP function with imbalance in tau/MAP2 content could contribute to HD striatal atrophy and dysfunction. Besides, TNIs might be indicative of such MAP abnormalities. TNIs are also found in early pathology Alzheimer's disease and in tauopathy mice over-expressing mutant 4R-tau. This indicates that tau alteration is sufficient for TNI detection, which becomes a marker of increased total tau and/or altered 4R/3R-tau ratio and reporter of pathology-associated nuclear indentations. Altogether, these recent studies suggest that correcting the SRSF6-driven missplicing and/or microtubule-associated imbalance might be of therapeutic value in HD.


Asunto(s)
Encéfalo/patología , Citoesqueleto/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Fosfoproteínas/genética , Factores de Empalme Serina-Arginina/genética , Empalme Alternativo/fisiología , Animales , Citoesqueleto/genética , Modelos Animales de Enfermedad , Humanos , Proteína Huntingtina/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/patología , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Expansión de Repetición de Trinucleótido , Proteínas tau/genética , Proteínas tau/metabolismo
16.
Rev. cuba. oftalmol ; 2(1/2): 35-42, ene.-ago. 1989. tab
Artículo en Español | LILACS | ID: lil-74729

RESUMEN

De toda la información que el hombre recibe del medio valiéndose de los analizadores,el mayor tanto por ciento corresponde a la información visual. Los autores estudian 82 niños estrábicos de 8 a 10 años de edad y lo clasifican en 2 grupos según su predominio lateral ojo-mano: homogénea y cruzada.Estudian en ambos grupos el desarrollo de la orientación espacial y corporal, aplicando los test de Piaget, Head, y gnosias digitales. Reportan diferencias significativas con respecto al reconocimiento digital y a la orientación corporal en grupo con lateralidad cruzada


Asunto(s)
Niño , Humanos , Masculino , Femenino , Lateralidad Funcional , Estrabismo/fisiopatología
17.
Rev. Hosp. Psiquiátr. La Habana ; 29(1): 139-45, ene.-mar. 1988. ilus
Artículo en Español | LILACS | ID: lil-74115

RESUMEN

El presente trabajo hace un estudio clinicopedagógico de una paciente prescolar derecha que a partir de una fractura del brazo derecho comienza a utilizar su mano izquierda. Los autores exponen gráficamente las dificultades en la escritura confrontadas por la niña al comenzar la escuela, desarrollando una singular escritura en espejo generalizada, nunca antes observada en nuestra práctica diaria. El desarrollo de la lectura y cálculo matemático fueron normales. Se explican los métodos psicopedagógicos utilizados en el tratamiento y la evolución de la menor


Asunto(s)
Niño , Humanos , Femenino , Dominancia Cerebral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA