Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
FEBS J ; 290(11): 2786-2804, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35262281

RESUMEN

The study of cerebellar development has been at the forefront of neuroscience since the pioneering work of Wilhelm His Sr., Santiago Ramón y Cajal and many others since the 19th century. They laid the foundation to identify the circuitry of the cerebellum, already revealing its stereotypic three-layered cortex and discerning several of its neuronal components. Their work was fundamental in the acceptance of the neuron doctrine, which acknowledges the key role of individual neurons in forming the basic units of the nervous system. Increasing evidence shows that the cerebellum performs a variety of homeostatic and higher order neuronal functions beyond the mere control of motor behaviour. Over the last three decades, many studies have revealed the molecular machinery that regulates distinct aspects of cerebellar development, from the establishment of a cerebellar anlage in the posterior brain to the identification of cerebellar neuron diversity at the single cell level. In this review, we focus on summarizing our current knowledge on early cerebellar development with a particular emphasis on the molecular determinants that secure neuron specification and contribute to the diversity of cerebellar neurons.


Asunto(s)
Cerebelo , Neuronas , Animales , Humanos , Cerebelo/anatomía & histología , Cerebelo/citología , Cerebelo/embriología , Biología Evolutiva , Neuronas GABAérgicas/citología , Homeostasis , Neuronas/clasificación , Neuronas/citología , Neuronas/metabolismo , Neurociencias , Análisis de la Célula Individual
2.
Proc Natl Acad Sci U S A ; 115(51): 13021-13026, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30487221

RESUMEN

The respiratory rhythm is generated by the preBötzinger complex in the medulla oblongata, and is modulated by neurons in the retrotrapezoid nucleus (RTN), which are essential for accelerating respiration in response to high CO2 Here we identify a LBX1 frameshift (LBX1FS ) mutation in patients with congenital central hypoventilation. The mutation alters the C-terminal but not the DNA-binding domain of LBX1 Mice with the analogous mutation recapitulate the breathing deficits found in humans. Furthermore, the mutation only interferes with a small subset of Lbx1 functions, and in particular with development of RTN neurons that coexpress Lbx1 and Phox2b. Genome-wide analyses in a cell culture model show that Lbx1FS and wild-type Lbx1 proteins are mostly bound to similar sites, but that Lbx1FS is unable to cooperate with Phox2b. Thus, our analyses on Lbx1FS (dys)function reveals an unusual pathomechanism; that is, a mutation that selectively interferes with the ability of Lbx1 to cooperate with Phox2b, and thus impairs the development of a small subpopulation of neurons essential for respiratory control.


Asunto(s)
Mutación del Sistema de Lectura , Proteínas de Homeodominio/genética , Hipoventilación/congénito , Proteínas Musculares/fisiología , Neuronas/patología , Apnea Central del Sueño/etiología , Factores de Transcripción/genética , Animales , Animales Recién Nacidos , Células Cultivadas , Femenino , Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/metabolismo , Humanos , Hipoventilación/etiología , Hipoventilación/metabolismo , Hipoventilación/patología , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Linaje , Respiración , Apnea Central del Sueño/metabolismo , Apnea Central del Sueño/patología , Factores de Transcripción/metabolismo , Secuenciación Completa del Genoma
3.
Proc Natl Acad Sci U S A ; 114(30): 8095-8100, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28698373

RESUMEN

Vocalization in young mice is an innate response to isolation or mechanical stimulation. Neuronal circuits that control vocalization and breathing overlap and rely on motor neurons that innervate laryngeal and expiratory muscles, but the brain center that coordinates these motor neurons has not been identified. Here, we show that the hindbrain nucleus tractus solitarius (NTS) is essential for vocalization in mice. By generating genetically modified newborn mice that specifically lack excitatory NTS neurons, we show that they are both mute and unable to produce the expiratory drive required for vocalization. Furthermore, the muteness of these newborns results in maternal neglect. We also show that neurons of the NTS directly connect to and entrain the activity of spinal (L1) and nucleus ambiguus motor pools located at positions where expiratory and laryngeal motor neurons reside. These motor neurons control expiratory pressure and laryngeal tension, respectively, thereby establishing the essential biomechanical parameters used for vocalization. In summary, our work demonstrates that the NTS is an obligatory component of the neuronal circuitry that transforms breaths into calls.


Asunto(s)
Núcleo Solitario/fisiología , Vocalización Animal/fisiología , Animales , Animales Recién Nacidos , Femenino , Músculos Laríngeos/fisiología , Conducta Materna , Ratones , Neuronas Motoras/fisiología , Embarazo , Respiración
4.
Mol Cell Proteomics ; 14(1): 50-65, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25326457

RESUMEN

The c-Jun N-terminal kinase (JNK) is an important mediator of physiological and pathophysiological processes in the central nervous system. Importantly, JNK not only is involved in neuronal cell death, but also plays a significant role in neuronal differentiation and regeneration. For example, nerve growth factor induces JNK-dependent neuronal differentiation in several model systems. The mechanism by which JNK mediates neuronal differentiation is not well understood. Here, we employed a proteomic strategy to better characterize the function of JNK during neuronal differentiation. We used SILAC-based quantitative proteomics to identify proteins that interact with JNK in PC12 cells in a nerve growth factor-dependent manner. Intriguingly, we found that JNK interacted with neuronal transport granule proteins such as Sfpq and Nono upon NGF treatment. We validated the specificity of these interactions by showing that they were disrupted by a specific peptide inhibitor that blocks the interaction of JNK with its substrates. Immunoprecipitation and Western blotting experiments confirmed the interaction of JNK1 with Sfpq/Nono and demonstrated that it was RNA dependent. Confocal microscopy indicated that JNK1 associated with neuronal granule proteins in the cytosol of PC12 cells, primary cortical neurons, and P19 neuronal cells. Finally, siRNA experiments confirmed that Sfpq was necessary for neurite outgrowth in PC12 cells and that it most likely acted in the same pathway as JNK. In summary, our data indicate that the interaction of JNK1 with transport granule proteins in the cytosol of differentiating neurons plays an important role during neuronal development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Ratones , Factores de Crecimiento Nervioso/farmacología , Células PC12 , Factor de Empalme Asociado a PTB , Estructura Terciaria de Proteína , Proteómica , Transporte de ARN , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA