Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Med ; 5(7): 759-779.e7, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38593812

RESUMEN

BACKGROUND: The treatment of melanoma, the deadliest form of skin cancer, has greatly benefited from immunotherapy. However, many patients do not show a durable response, which is only partially explained by known resistance mechanisms. METHODS: We performed single-cell RNA sequencing of tumor immune infiltrates and matched peripheral blood mononuclear cells of 22 checkpoint inhibitor (CPI)-naive stage III-IV metastatic melanoma patients. After sample collection, the same patients received CPI treatment, and their response was assessed. FINDINGS: CPI responders showed high levels of classical monocytes in peripheral blood, which preferentially transitioned toward CXCL9-expressing macrophages in tumors. Trajectories of tumor-infiltrating CD8+ T cells diverged at the level of effector memory/stem-like T cells, with non-responder cells progressing into a state characterized by cellular stress and apoptosis-related gene expression. Consistently, predicted non-responder-enriched myeloid-T/natural killer cell interactions were primarily immunosuppressive, while responder-enriched interactions were supportive of T cell priming and effector function. CONCLUSIONS: Our study illustrates that the tumor immune microenvironment prior to CPI treatment can be indicative of response. In perspective, modulating the myeloid and/or effector cell compartment by altering the described cell interactions and transitions could improve immunotherapy response. FUNDING: This research was funded by Roche Pharma Research and Early Development.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Neoplasias Cutáneas , Microambiente Tumoral , Humanos , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Melanoma/patología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Masculino , Femenino , Células Mieloides/inmunología , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/metabolismo , Persona de Mediana Edad , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos
2.
Blood ; 143(21): 2152-2165, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38437725

RESUMEN

ABSTRACT: Effective T-cell responses not only require the engagement of T-cell receptors (TCRs; "signal 1"), but also the availability of costimulatory signals ("signal 2"). T-cell bispecific antibodies (TCBs) deliver a robust signal 1 by engaging the TCR signaling component CD3ε, while simultaneously binding to tumor antigens. The CD20-TCB glofitamab redirects T cells to CD20-expressing malignant B cells. Although glofitamab exhibits strong single-agent efficacy, adding costimulatory signaling may enhance the depth and durability of T-cell-mediated tumor cell killing. We developed a bispecific CD19-targeted CD28 agonist (CD19-CD28), RG6333, to enhance the efficacy of glofitamab and similar TCBs by delivering signal 2 to tumor-infiltrating T cells. CD19-CD28 distinguishes itself from the superagonistic antibody TGN1412, because its activity requires the simultaneous presence of a TCR signal and CD19 target binding. This is achieved through its engineered format incorporating a mutated Fc region with abolished FcγR and C1q binding, CD28 monovalency, and a moderate CD28 binding affinity. In combination with glofitamab, CD19-CD28 strongly increased T-cell effector functions in ex vivo assays using peripheral blood mononuclear cells and spleen samples derived from patients with lymphoma and enhanced glofitamab-mediated regression of aggressive lymphomas in humanized mice. Notably, the triple combination of glofitamab with CD19-CD28 with the costimulatory 4-1BB agonist, CD19-4-1BBL, offered substantially improved long-term tumor control over glofitamab monotherapy and respective duplet combinations. Our findings highlight CD19-CD28 as a safe and highly efficacious off-the-shelf combination partner for glofitamab, similar TCBs, and other costimulatory agonists. CD19-CD28 is currently in a phase 1 clinical trial in combination with glofitamab. This trial was registered at www.clinicaltrials.gov as #NCT05219513.


Asunto(s)
Anticuerpos Biespecíficos , Antígenos CD19 , Antígenos CD20 , Antígenos CD28 , Inmunoterapia , Humanos , Antígenos CD28/inmunología , Antígenos CD28/agonistas , Animales , Ratones , Anticuerpos Biespecíficos/farmacología , Antígenos CD19/inmunología , Antígenos CD20/inmunología , Inmunoterapia/métodos , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos NOD
3.
Blood ; 143(1): 57-63, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37824808

RESUMEN

ABSTRACT: Bruton tyrosine kinase inhibitors (BTKis) that target B-cell receptor signaling have led to a paradigm shift in chronic lymphocytic leukemia (CLL) treatment. BTKis have been shown to reduce abnormally high CLL-associated T-cell counts and the expression of immune checkpoint receptors concomitantly with tumor reduction. However, the impact of BTKi therapy on T-cell function has not been fully characterized. Here, we performed longitudinal immunophenotypic and functional analysis of pretreatment and on-treatment (6 and 12 months) peripheral blood samples from patients in the phase 3 E1912 trial comparing ibrutinib-rituximab with fludarabine, cyclophosphamide, and rituximab (FCR). Intriguingly, we report that despite reduced overall T-cell counts; higher numbers of T cells, including effector CD8+ subsets at baseline and at the 6-month time point, associated with no infections; and favorable progression-free survival in the ibrutinib-rituximab arm. Assays demonstrated enhanced anti-CLL T-cell killing function during ibrutinib-rituximab treatment, including a switch from predominantly CD4+ T-cell:CLL immune synapses at baseline to increased CD8+ lytic synapses on-therapy. Conversely, in the FCR arm, higher T-cell numbers correlated with adverse clinical responses and showed no functional improvement. We further demonstrate the potential of exploiting rejuvenated T-cell cytotoxicity during ibrutinib-rituximab treatment, using the bispecific antibody glofitamab, supporting combination immunotherapy approaches.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Rituximab , Monitorización Inmunológica , Protocolos de Quimioterapia Combinada Antineoplásica , Ciclofosfamida , Inmunoterapia , Linfocitos T CD8-positivos
4.
Elife ; 122023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38127790

RESUMEN

Glioblastoma (GBM) harbors a highly immunosuppressive tumor microenvironment (TME) which influences glioma growth. Major efforts have been undertaken to describe the TME on a single-cell level. However, human data on regional differences within the TME remain scarce. Here, we performed high-depth single-cell RNA sequencing (scRNAseq) on paired biopsies from the tumor center, peripheral infiltration zone and blood of five primary GBM patients. Through analysis of >45,000 cells, we revealed a regionally distinct transcription profile of microglia (MG) and monocyte-derived macrophages (MdMs) and an impaired activation signature in the tumor-peripheral cytotoxic-cell compartment. Comparing tumor-infiltrating CD8+ T cells with circulating cells identified CX3CR1high and CX3CR1int CD8+ T cells with effector and memory phenotype, respectively, enriched in blood but absent in the TME. Tumor CD8+ T cells displayed a tissue-resident memory phenotype with dysfunctional features. Our analysis provides a regionally resolved mapping of transcriptional states in GBM-associated leukocytes, serving as an additional asset in the effort towards novel therapeutic strategies to combat this fatal disease.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/patología , Linfocitos T CD8-positivos , Macrófagos/patología , Glioma/genética , Leucocitos/patología , Microambiente Tumoral/genética , Neoplasias Encefálicas/patología
5.
Nat Commun ; 14(1): 7888, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036503

RESUMEN

Therapeutic antibodies are widely used to treat severe diseases. Most of them alter immune cells and act within the immunological synapse; an essential cell-to-cell interaction to direct the humoral immune response. Although many antibody designs are generated and evaluated, a high-throughput tool for systematic antibody characterization and prediction of function is lacking. Here, we introduce the first comprehensive open-source framework, scifAI (single-cell imaging flow cytometry AI), for preprocessing, feature engineering, and explainable, predictive machine learning on imaging flow cytometry (IFC) data. Additionally, we generate the largest publicly available IFC dataset of the human immunological synapse containing over 2.8 million images. Using scifAI, we analyze class frequency and morphological changes under different immune stimulation. T cell cytokine production across multiple donors and therapeutic antibodies is quantitatively predicted in vitro, linking morphological features with function and demonstrating the potential to significantly impact antibody design. scifAI is universally applicable to IFC data. Given its modular architecture, it is straightforward to incorporate into existing workflows and analysis pipelines, e.g., for rapid antibody screening and functional characterization.


Asunto(s)
Comunicación Celular , Sinapsis Inmunológicas , Humanos , Flujo de Trabajo , Aprendizaje Automático
6.
Clin Cancer Res ; 29(21): 4449-4463, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37379429

RESUMEN

PURPOSE: Target-dependent TCB activity can result in the strong and systemic release of cytokines that may develop into cytokine release syndrome (CRS), highlighting the need to understand and prevent this complex clinical syndrome. EXPERIMENTAL DESIGN: We explored the cellular and molecular players involved in TCB-mediated cytokine release by single-cell RNA-sequencing of whole blood treated with CD20-TCB together with bulk RNA-sequencing of endothelial cells exposed to TCB-induced cytokine release. We used the in vitro whole blood assay and an in vivo DLBCL model in immunocompetent humanized mice to assess the effects of dexamethasone, anti-TNFα, anti-IL6R, anti-IL1R, and inflammasome inhibition, on TCB-mediated cytokine release and antitumor activity. RESULTS: Activated T cells release TNFα, IFNγ, IL2, IL8, and MIP-1ß, which rapidly activate monocytes, neutrophils, DCs, and NKs along with surrounding T cells to amplify the cascade further, leading to TNFα, IL8, IL6, IL1ß, MCP-1, MIP-1α, MIP-1ß, and IP-10 release. Endothelial cells contribute to IL6 and IL1ß release and at the same time release several chemokines (MCP-1, IP-10, MIP-1α, and MIP-1ß). Dexamethasone and TNFα blockade efficiently reduced CD20-TCB-mediated cytokine release whereas IL6R blockade, inflammasome inhibition, and IL1R blockade induced a less pronounced effect. Dexamethasone, IL6R blockade, IL1R blockade, and the inflammasome inhibitor did not interfere with CD20-TCB activity, in contrast to TNFα blockade, which partially inhibited antitumor activity. CONCLUSIONS: Our work sheds new light on the cellular and molecular players involved in cytokine release driven by TCBs and provides a rationale for the prevention of CRS in patients treated with TCBs. See related commentary by Luri-Rey et al., p. 4320.


Asunto(s)
Anticuerpos Biespecíficos , Factor de Necrosis Tumoral alfa , Humanos , Ratones , Animales , Quimiocina CCL3 , Quimiocina CCL4 , Anticuerpos Biespecíficos/farmacología , Interleucina-8 , Quimiocina CXCL10 , Interleucina-6 , Síndrome de Liberación de Citoquinas , Células Endoteliales , Inflamasomas , Citocinas , Linfocitos T , Dexametasona/farmacología , ARN
7.
Nature ; 610(7930): 161-172, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171284

RESUMEN

Expansion and differentiation of antigen-experienced PD-1+TCF-1+ stem-like CD8+ T cells into effector cells is critical for the success of immunotherapies based on PD-1 blockade1-4. Hashimoto et al. have shown that, in chronic infections, administration of the cytokine interleukin (IL)-2 triggers an alternative differentiation path of stem-like T cells towards a distinct population of 'better effector' CD8+ T cells similar to those generated in an acute infection5. IL-2 binding to the IL-2 receptor α-chain (CD25) was essential in triggering this alternative differentiation path and expanding better effectors with distinct transcriptional and epigenetic profiles. However, constitutive expression of CD25 on regulatory T cells and some endothelial cells also contributes to unwanted systemic effects from IL-2 therapy. Therefore, engineered IL-2 receptor ß- and γ-chain (IL-2Rßγ)-biased agonists are currently being developed6-10. Here we show that IL-2Rßγ-biased agonists are unable to preferentially expand better effector T cells in cancer models and describe PD1-IL2v, a new immunocytokine that overcomes the need for CD25 binding by docking in cis to PD-1. Cis binding of PD1-IL2v to PD-1 and IL-2Rßγ on the same cell recovers the ability to differentiate stem-like CD8+ T cells into better effectors in the absence of CD25 binding in both chronic infection and cancer models and provides superior efficacy. By contrast, PD-1- or PD-L1-blocking antibodies alone, or their combination with clinically relevant doses of non-PD-1-targeted IL2v, cannot expand this unique subset of better effector T cells and instead lead to the accumulation of terminally differentiated, exhausted T cells. These findings provide the basis for the development of a new generation of PD-1 cis-targeted IL-2R agonists with enhanced therapeutic potential for the treatment of cancer and chronic infections.


Asunto(s)
Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1 , Receptores de Interleucina-2 , Anticuerpos Bloqueadores/inmunología , Anticuerpos Bloqueadores/farmacología , Anticuerpos Bloqueadores/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Infecciones/tratamiento farmacológico , Infecciones/inmunología , Interleucina-2/inmunología , Interleucina-2/farmacología , Interleucina-2/uso terapéutico , Subunidad alfa del Receptor de Interleucina-2/agonistas , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptores de Interleucina-2/agonistas
8.
AAPS J ; 24(1): 7, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862519

RESUMEN

CD3-bispecific antibodies are a new class of immunotherapeutic drugs against cancer. The pharmacological activity of CD3-bispecifics is typically assessed through in vitro assays of cancer cell lines co-cultured with human peripheral blood mononuclear cells (PBMCs). Assay results depend on experimental conditions such as incubation time and the effector-to-target cell ratio, which can hinder robust quantification of pharmacological activity. In order to overcome these limitations, we developed a new, holistic approach for quantification of the in vitro dose-response relationship. Our experimental design integrates a time-independent analysis of the dose-response across different time points as an alternative to the static, "snap-shot" analysis based on a single time point commonly used in dose-response assays. We show that the potency values derived from static in vitro experiments depend on the incubation time, which leads to inconsistent results across multiple assays and compounds. We compared the potency values from the time-independent analysis with a model-based approach. We find comparably accurate potency estimates from the model-based and time-independent analyses and that the time-independent analysis provides a robust quantification of pharmacological activity. This approach may allow for an improved head-to-head comparison of different compounds and test systems and may prove useful for supporting first-in-human dose selection.


Asunto(s)
Anticuerpos Biespecíficos , Linfocitos T , Anticuerpos Biespecíficos/farmacología , Complejo CD3 , Análisis de Datos , Humanos , Leucocitos Mononucleares
9.
Mol Cancer Ther ; 20(2): 357-366, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33298591

RESUMEN

Targeted T-cell redirection is a promising field in cancer immunotherapy. T-cell bispecific antibodies (TCB) are novel antibody constructs capable of binding simultaneously to T cells and tumor cells, allowing cross-linking and the formation of immunologic synapses. This in turn results in T-cell activation, expansion, and tumor killing. TCB activity depends on system-related properties such as tumor target antigen expression as well as antibody properties such as binding affinities to target and T cells. Here, we developed a systems model integrating in vitro data to elucidate further the mechanism of action and to quantify the cytotoxic effects as the relationship between targeted antigen expression and corresponding TCB activity. In the proposed model, we capture relevant processes, linking immune synapse formation to T-cell activation, expansion, and tumor killing for TCBs in vitro to differentiate the effect between tumor cells expressing high or low levels of the tumor antigen. We used cibisatamab, a TCB binding to carcinoembryonic antigen (CEA), to target different tumor cell lines with high and low CEA expression in vitro We developed a model to capture and predict our observations, as a learn-and-confirm cycle. Although full tumor killing and substantial T-cell activation was observed in high expressing tumor cells, the model correctly predicted partial tumor killing and minimal T-cell activation in low expressing tumor cells when exposed to cibisatamab. Furthermore, the model successfully predicted cytotoxicity across a wide range of tumor cell lines, spanning from very low to high CEA expression.


Asunto(s)
Anticuerpos Biespecíficos/metabolismo , Linfocitos T/metabolismo , Animales , Línea Celular Tumoral , Humanos
10.
J Chromatogr A ; 1610: 460554, 2020 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31597603

RESUMEN

Therapeutic antibodies can elicit an immune response through different mechanisms, either cell independent via complement activation (CDC) or through activation of immune-effector cells (such as macrophages and NK cells). After target binding, the Fc part of the antibody will interact with Fc receptors on the surface of effector cells, leading to activation and lysis of the target cells by a mechanism called antibody-dependent cell-mediated cytotoxicity (ADCC). The ADCC of an antibody can be increased by modifying the carbohydrates on the Fc part. If the fucose on the first N-acetylglucosamine is absent, the affinity for the FcγRIIIa is increased and the ADCC enhanced. We describe the development of a chromatography method that is based on the differential affinity of the Fc receptor FcγRIIIa (high affinity V158 variant) for fucosylated and a-fucosylated antibodies. Immobilized FcγRIIIa can be used for the separation of immunoglobulins carrying these glycosylation variants for both, analytical and preparative purposes. The biological activity and fucose content of three pools enriched for fully fucosylated, mono-fucosylated or a-fucosylated carbohydrates could be characterized. Mono-fucosylated and a-fucosylated immunoglobulins have the same enhanced biological activity compared to fully fucosylated IgGs. A direct, label- and modification-free analytical method for screening of IgGs from culture supernatant was developed and was amenable to high-throughput screening. Clones producing antibodies with a high content of a-fucosylated oligosaccharides could be successfully selected.


Asunto(s)
Anticuerpos/uso terapéutico , Cromatografía/métodos , Fucosa/metabolismo , Ingeniería de Proteínas , Receptores de IgG/metabolismo , Secuencia de Aminoácidos , Anticuerpos/química , Citotoxicidad Celular Dependiente de Anticuerpos , Células Cultivadas , Glicosilación , Humanos , Inmunoglobulina G/metabolismo , Oligosacáridos/metabolismo , Receptores de IgG/química
11.
Sci Rep ; 9(1): 13675, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31548565

RESUMEN

CD20 is a B-lymphocyte specific integral membrane protein, an activated-glycosylated phosphoprotein expressed on the surface of B-cells and a clinically validated target of monoclonal antibodies such as rituximab, ocrelizumab, ofatumumab and obinutuzumab in the treatment of all B cell lymphomas and leukemias as well as autoimmune diseases. Here, we report the extraction and purification of native CD20 from SUDHL4 and RAMOS cell lines. To improve the protein yield, we applied a calixarene-based detergent approach to solubilize, stabilize and purify native CD20 from HEK293 cells. Size Exclusion Chromatography (SEC) and Analytical Ultracentrifugation show that purified CD20 was non-aggregated and that CD20 oligomerization is concentration dependent. Negative stain electron microscopy and atomic force microscopy revealed homogenous populations of CD20. However, no defined structure could be observed. Interestingly, micellar solubilized and purified CD20 particles adopt uniformly confined nanodroplets which do not fuse and aggregate. Finally, purified CD20 could bind to rituximab and obinutuzumab as demonstrated by SEC, and Surface Plasmon Resonance (SPR). Specificity of binding was confirmed using CD20 antibody mutants to human B-cell lymphoma cells. The strategy described in this work will help investigate CD20 binding with newly developed antibodies and eventually help to optimize them. This approach may also be applicable to other challenging membrane proteins.


Asunto(s)
Anticuerpos Monoclonales Humanizados/metabolismo , Antígenos CD20/metabolismo , Rituximab/metabolismo , Antígenos CD20/inmunología , Línea Celular , Humanos
12.
Sci Transl Med ; 11(496)2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31189721

RESUMEN

Endogenous costimulatory molecules on T cells such as 4-1BB (CD137) can be leveraged for cancer immunotherapy. Systemic administration of agonistic anti-4-1BB antibodies, although effective preclinically, has not advanced to phase 3 trials because they have been hampered by both dependency on Fcγ receptor-mediated hyperclustering and hepatotoxicity. To overcome these issues, we engineered proteins simultaneously targeting 4-1BB and a tumor stroma or tumor antigen: FAP-4-1BBL (RG7826) and CD19-4-1BBL. In the presence of a T cell receptor signal, they provide potent T cell costimulation strictly dependent on tumor antigen-mediated hyperclustering without systemic activation by FcγR binding. We could show targeting of FAP-4-1BBL to FAP-expressing tumor stroma and lymph nodes in a colorectal cancer-bearing rhesus monkey. Combination of FAP-4-1BBL with tumor antigen-targeted T cell bispecific (TCB) molecules in human tumor samples led to increased IFN-γ and granzyme B secretion. Further, combination of FAP- or CD19-4-1BBL with CEA-TCB (RG7802) or CD20-TCB (RG6026), respectively, resulted in tumor remission in mouse models, accompanied by intratumoral accumulation of activated effector CD8+ T cells. FAP- and CD19-4-1BBL thus represent an off-the-shelf combination immunotherapy without requiring genetic modification of effector cells for the treatment of solid and hematological malignancies.


Asunto(s)
Anticuerpos Biespecíficos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Anticuerpos Biespecíficos/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular , Proliferación Celular/fisiología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Humanos , Inmunoterapia , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Neoplasias/inmunología , Neoplasias/terapia
13.
Blood ; 133(18): 1964-1976, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30850381

RESUMEN

Novel strategies, such as chemosensitization with targeted agents, that build on the success of standard immunochemotherapy show promise for the treatment of non-Hodgkin lymphoma (NHL). Here, we report a phase 1b study investigating dose escalation of the BCL2 inhibitor, venetoclax, in combination with rituximab or obinutuzumab and cyclophosphamide, doxorubicin, vincristine, and prednisone (R-/G-CHOP) chemotherapy in B-cell NHL. Objectives included safety assessment and determination of a recommended phase 2 dose (RP2D). Fifty-six patients were enrolled, most with follicular lymphoma (43%) or diffuse large B-cell lymphoma (DLBCL; 32%). Dose-limiting toxicities were reported in 3/14 patients at the first venetoclax dose (200 mg/d), after which dosing was changed from daily to 10 days per cycle and escalated to 800 mg. A further reduction to 5 days per cycle occurred at the 800-mg dose level in the G-CHOP arm. Cytopenias were predominant among grade 3/4 events and reported at a higher rate than expected, particularly in the G-CHOP arm; however, safety was manageable. Overall response rates were 87.5% (R-CHOP and G-CHOP combinations); complete response (CR) rates were 79.2% and 78.1%, respectively. Most double-expressor (BCL2+ and MYC+) DLBCL patients (87.5%; n = 7/8) achieved CR. Although the maximum tolerated dose was not reached, the RP2D for venetoclax with R-CHOP was established at 800 mg days 4 to 10 of cycle 1 and days 1 to 10 of cycles 2 to 8; higher doses were not explored, and this dosing schedule demonstrated an acceptable safety profile. This regimen is subsequently being evaluated in first-line DLBCL in the phase 2 portion of the study. This trial was registered at www.clinicaltrials.gov as #NCT02055820.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Linfoma no Hodgkin/tratamiento farmacológico , Sulfonamidas/uso terapéutico , Anciano , Anticuerpos Monoclonales Humanizados/uso terapéutico , Ciclofosfamida/uso terapéutico , Supervivencia sin Enfermedad , Doxorrubicina/uso terapéutico , Femenino , Humanos , Linfoma no Hodgkin/mortalidad , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Prednisona/uso terapéutico , Rituximab/uso terapéutico , Vincristina/uso terapéutico
14.
Sci Transl Med ; 10(461)2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30282693

RESUMEN

T cell bispecific antibodies (TCBs) are engineered molecules that include, within a single entity, binding sites to the T cell receptor and to tumor-associated or tumor-specific antigens. The receptor tyrosine kinase HER2 is a tumor-associated antigen in ~25% of breast cancers. TCBs targeting HER2 may result in severe toxicities, likely due to the expression of HER2 in normal epithelia. About 40% of HER2-positive tumors express p95HER2, a carboxyl-terminal fragment of HER2. Using specific antibodies, here, we show that p95HER2 is not expressed in normal tissues. We describe the development of p95HER2-TCB and show that it has a potent antitumor effect on p95HER2-expressing breast primary cancers and brain lesions. In contrast with a TCB targeting HER2, p95HER2-TCB has no effect on nontransformed cells that do not overexpress HER2. These data pave the way for the safe treatment of a subgroup of HER2-positive tumors by targeting a tumor-specific antigen.


Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/inmunología , Receptor ErbB-2/inmunología , Linfocitos T/inmunología , Animales , Neoplasias de la Mama/patología , Complejo CD3/inmunología , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Biomed Res Int ; 2018: 1023490, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29750146

RESUMEN

The antibody-dependent cell-mediated cytotoxicity (ADCC) of the anti-CD20 monoclonal antibodies (mAbs) rituximab and obinutuzumab against the cell line Raji and isolated CLL cells and its potential impairment by kinase inhibitors (KI) was determined via lactate dehydrogenase release or calcein retention, respectively, using genetically modified NK92 cells expressing CD16-176V as effector cells. Compared to peripheral blood mononuclear cells, recombinant effector cell lines showed substantial alloreactivity-related cytotoxicity without addition of mAbs but afforded determination of ADCC with reduced interassay variability. The cytotoxicity owing to alloreactivity was less susceptible to interference by KI than the ADCC of anti-CD20 mAbs, which was markedly diminished by ibrutinib, but not by idelalisib. Compared to rituximab, the ADCC of obinutuzumab against primary CLL cells showed approximately 30% higher efficacy and less interference with KI. Irreversible BTK inhibitors at a clinically relevant concentration of 1 µM only weakly impaired the ADCC of anti-CD20 mAbs, with less influence in combinations with obinutuzumab than with rituximab and by acalabrutinib than by ibrutinib or tirabrutinib. In summary, NK cell line-based assays permitted the sensitive detection of ADCC of therapeutic anti-CD20 mAbs against CLL cells and of the interference of KI with this important killing mechanism.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Antígenos CD20/metabolismo , Linfocitos B/efectos de los fármacos , Citotoxinas/farmacología , Células Asesinas Naturales/efectos de los fármacos , Receptores de Antígenos de Linfocitos B/metabolismo , Adenina/análogos & derivados , Anticuerpos Monoclonales Humanizados/farmacología , Benzamidas/farmacología , Línea Celular Tumoral , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Piperidinas , Inhibidores de Proteínas Quinasas/farmacología , Purinas/farmacología , Pirazinas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Quinazolinonas/farmacología , Rituximab/farmacología
16.
Clin Cancer Res ; 24(19): 4785-4797, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29716920

RESUMEN

Purpose: Despite promising clinical activity, T-cell-engaging therapies including T-cell bispecific antibodies (TCB) are associated with severe side effects requiring the use of step-up-dosing (SUD) regimens to mitigate safety. Here, we present a next-generation CD20-targeting TCB (CD20-TCB) with significantly higher potency and a novel approach enabling safer administration of such potent drug.Experimental Design: We developed CD20-TCB based on the 2:1 TCB molecular format and characterized its activity preclinically. We also applied a single administration of obinutuzumab (Gazyva pretreatment, Gpt; Genentech/Roche) prior to the first infusion of CD20-TCB as a way to safely administer such a potent drug.Results: CD20-TCB is associated with a long half-life and high potency enabled by high-avidity bivalent binding to CD20 and head-to-tail orientation of B- and T-cell-binding domains in a 2:1 molecular format. CD20-TCB displays considerably higher potency than other CD20-TCB antibodies in clinical development and is efficacious on tumor cells expressing low levels of CD20. CD20-TCB also displays potent activity in primary tumor samples with low effector:target ratios. In vivo, CD20-TCB regresses established tumors of aggressive lymphoma models. Gpt enables profound B-cell depletion in peripheral blood and secondary lymphoid organs and reduces T-cell activation and cytokine release in the peripheral blood, thus increasing the safety of CD20-TCB administration. Gpt is more efficacious and safer than SUD.Conclusions: CD20-TCB and Gpt represent a potent and safer approach for treatment of lymphoma patients and are currently being evaluated in phase I, multicenter study in patients with relapsed/refractory non-Hodgkin lymphoma (NCT03075696). Clin Cancer Res; 24(19); 4785-97. ©2018 AACR See related commentary by Prakash and Diefenbach, p. 4631.


Asunto(s)
Anticuerpos Biespecíficos/administración & dosificación , Anticuerpos Monoclonales Humanizados/administración & dosificación , Neoplasias Hematológicas/tratamiento farmacológico , Rituximab/administración & dosificación , Animales , Antígenos CD20/genética , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/patología , Humanos , Macaca fascicularis , Ratones , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
17.
J Immunol ; 200(7): 2304-2312, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29453281

RESUMEN

Idelalisib is a highly selective oral inhibitor of PI3Kδ indicated for the treatment of patients with relapsed chronic lymphocytic leukemia in combination with rituximab. Despite additive clinical effects, previous studies have paradoxically demonstrated that targeted therapies potentially negatively affect anti-CD20 mAb effector mechanisms. To address these potential effects, we investigated the impact of PI3Kδ inhibition by idelalisib on the effector mechanisms of rituximab and obinutuzumab. At clinically relevant concentrations, idelalisib minimally influenced rituximab- and obinutuzumab-mediated Ab-dependent cellular cytotoxicity and phagocytosis on human lymphoma cell lines, while maintaining the superiority of obinutuzumab-mediated Ab-dependent cellular cytotoxicity. Consistent with this, idelalisib did not influence obinutuzumab-mediated B cell depletion in whole-blood B cell-depletion assays. Further, idelalisib significantly enhanced obinutuzumab-mediated direct cell death of chronic lymphocytic leukemia cells. In murine systems, in vivo inhibition of PI3Kδ minimally interfered with maximal rituximab- or obinutuzumab-mediated depletion of leukemic targets. In addition, the duration of rituximab- and obinutuzumab-mediated depletion of leukemia cells was extended by combination with PI3Kδ inhibition. Collectively, these data demonstrate that PI3Kδ inhibition does not significantly affect the effector mechanisms induced by rituximab or obinutuzumab and provides an effective in vivo therapeutic combination. Therefore, combinations of obinutuzumab and idelalisib are currently being assessed in clinical studies.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Antineoplásicos/farmacología , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Fagocitosis/efectos de los fármacos , Purinas/farmacología , Quinazolinonas/farmacología , Rituximab/farmacología , Animales , Línea Celular Tumoral , Interacciones Farmacológicas , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Linfoma/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Ratones Transgénicos
19.
Cancer Immunol Immunother ; 66(1): 129-140, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27858101

RESUMEN

The complexity of the tumor microenvironment is difficult to mimic in vitro, particularly regarding tumor-host interactions. To enable better assessment of cancer immunotherapy agents in vitro, we developed a three-dimensional (3D) heterotypic spheroid model composed of tumor cells, fibroblasts, and immune cells. Drug targeting, efficient stimulation of immune cell infiltration, and specific elimination of tumor or fibroblast spheroid areas were demonstrated following treatment with a novel immunocytokine (interleukin-2 variant; IgG-IL2v) and tumor- or fibroblast-targeted T cell bispecific antibody (TCB). Following treatment with IgG-IL2v, activation of T cells, NK cells, and NKT cells was demonstrated by increased expression of the activation marker CD69 and enhanced cytokine secretion. The combination of TCBs with IgG-IL2v molecules was more effective than monotherapy, as shown by enhanced effects on immune cell infiltration; activation; increased cytokine secretion; and faster, more efficient elimination of targeted cells. This study demonstrates that the 3D heterotypic spheroid model provides a novel and versatile tool for in vitro evaluation of cancer immunotherapy agents and allows for assessment of additional aspects of the activity of cancer immunotherapy agents, including analysis of immune cell infiltration and drug targeting.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Microambiente Tumoral/inmunología , Animales , Humanos , Esferoides Celulares
20.
Protein Eng Des Sel ; 29(10): 457-466, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27578889

RESUMEN

Recombinant human IgG antibodies (hIgGs) completely devoid of binding to Fcγ receptors (FcγRs) and complement protein C1q, and thus with abolished immune effector functions, are of use for various therapeutic applications in order to reduce FcγR activation and Fc-mediated toxicity. Fc engineering approaches described to date only partially achieve this goal or employ a large number of mutations, which may increase the risk of anti-drug antibody generation. We describe here two new, engineered hIgG Fc domains, hIgG1-P329G LALA and hIgG4-P329G SPLE, with completely abolished FcγR and C1q interactions, containing a limited number of mutations and with unaffected FcRn interactions and Fc stability. Both 'effector-silent' Fc variants are based on a novel Fc mutation, P329G that disrupts the formation of a proline sandwich motif with the FcγRs. As this motif is present in the interface of all IgG Fc/FcγR complexes, its disruption can be applied to all human and most of the other mammalian IgG subclasses in order to create effector silent IgG molecules.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Ingeniería de Proteínas , Sitios de Unión , Línea Celular , Secuencia Conservada , Glicosilación , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Mutación , Agregación Plaquetaria/efectos de los fármacos , Polimorfismo Genético , Estructura Secundaria de Proteína , Receptores de Complemento/metabolismo , Receptores de IgG/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA