Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Can J Anaesth ; 69(10): 1211-1219, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35941333

RESUMEN

PURPOSE: Using machine learning, we developed a proprietary ultrasound software called the Spine Level Identification (SLIDE) system, which automatically identifies lumbar landmarks in real time as the operator slides the transducer over the lumber spine. Here, we assessed the agreement between SLIDE and manual palpation and traditional lumbar ultrasound (LUS) for determining the primary target L3-4 interspace. METHODS: Upon institutional ethics approval and informed consent, 76 healthy term parturients scheduled for elective Caesarean delivery were recruited. The L3-4 interspace was identified by manual palpation and then by the SLIDE method. The reference standard was located using traditional LUS by an experienced operator. The primary outcome was the L3-4 interspace identification agreement of manual palpation and SLIDE with the reference standard, as percentage agreement and Gwet's agreement coefficient (AC1). RESULTS: The raw agreement was 70% with Gwet's agreement coefficient (AC1) = 0.59 (95% confidence interval [CI], 0.41 to 0.77) for manual palpation and 84% with Gwet's AC1 = 0.82 (95% CI, 0.70 to 0.93) for SLIDE. When the levels differ from the reference, the manual palpation method identified L2-3 more often than L4-5 while the SLIDE method identified equally above or below L3-4. The SLIDE system had greater agreement than palpation in locating L3-4 and all other lumber interspaces after controlling for body mass index (adjusted odds ratio, 2.99; 95% CI, 1.21 to 8.7; P = 0.02). CONCLUSION: The SLIDE system had higher agreement with traditional ultrasound than manual palpation did in identifying L3-4 and all other lumber interspaces after adjusting for BMI in healthy term obstetric patients. Future studies should examine factors that affect agreement and ways to improve SLIDE for clinical integration. STUDY REGISTRATION: www. CLINICALTRIALS: gov (NCT02982317); registered 5 December 2016.


RéSUMé: OBJECTIF: À l'aide de l'apprentissage automatique, nous avons développé un logiciel d'échographie propriétaire appelé SLIDE (pour Spine Level Identification, c.-à-d. système d'identification du niveau vertébral), qui identifie automatiquement les points de repère lombaires en temps réel lorsque l'opérateur fait passer le transducteur sur la colonne lombaire. Ici, nous avons évalué l'agrément entre le SLIDE et la palpation manuelle et l'échographie lombaire traditionnelle pour déterminer l'espace intervertébral cible principal L3­L4. MéTHODE: Après avoir obtenu l'approbation du comité d'éthique de l'établissement et le consentement éclairé, 76 parturientes en bonne santé et à terme devant bénéficier d'un accouchement par césarienne programmée ont été recrutées. L'espace intervertébral L3­L4 a été identifié par palpation manuelle puis avec le logiciel SLIDE. L'étalon de référence a été localisé à l'aide d'une échographie lombaire traditionnelle par un opérateur expérimenté. Le critère d'évaluation principal était l'agrément entre l'identification de l'espace intervertébral L3­L4 par palpation manuelle et par logiciel SLIDE avec l'étalon de référence, en pourcentage d'agrément et coefficient d'agrément de Gwet (CA1). RéSULTATS: L'agrément brut était de 70 % avec le coefficient d'agrément de Gwet (CA1) = 0,59 (intervalle de confiance [IC] à 95 %, 0,41 à 0,77) pour la palpation manuelle et de 84 % avec le CA1 de Gwet = 0,82 (IC 95 %, 0,70 à 0,93) pour le logiciel SLIDE. Lorsque les niveaux lombaires différaient de la référence, la méthode de palpation manuelle a identifié L2­L3 plus souvent que L4­L5, tandis que la méthode SLIDE a identifié les vertèbres supérieures ou inférieures à L3­L4 de manière égale. Le système SLIDE a affiché un agrément plus important que la palpation pour localiser L3­L4 et tous les autres espaces intervertébraux lombaires après ajustement pour tenir compte de l'indice de masse corporelle (rapport de cotes ajusté, 2,99; IC 95 %, 1,21 à 8,7; P = 0,02). CONCLUSION: Le système SLIDE avait affiché un agrément plus élevé avec l'échographie traditionnelle que la palpation manuelle pour identifier le niveau L3­L4 et tous les autres espaces intervertébraux lombaires après ajustement pour tenir compte de l'IMC chez les patientes obstétricales à terme en bonne santé. Une étude future devrait examiner les facteurs qui affectent l'agrément et les moyens d'améliorer le logiciel SLIDE pour une intégration clinique. ENREGISTREMENT DE L'éTUDE: www.clinicaltrials.gov (NCT02982317); enregistrée le 5 décembre 2016.


Asunto(s)
Región Lumbosacra , Palpación , Femenino , Humanos , Vértebras Lumbares/diagnóstico por imagen , Palpación/métodos , Embarazo , Programas Informáticos , Columna Vertebral , Ultrasonografía
2.
IEEE Trans Med Imaging ; 39(6): 1868-1883, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31841401

RESUMEN

Uncertainty of labels in clinical data resulting from intra-observer variability can have direct impact on the reliability of assessments made by deep neural networks. In this paper, we propose a method for modelling such uncertainty in the context of 2D echocardiography (echo), which is a routine procedure for detecting cardiovascular disease at point-of-care. Echo imaging quality and acquisition time is highly dependent on the operator's experience level. Recent developments have shown the possibility of automating echo image quality quantification by mapping an expert's assessment of quality to the echo image via deep learning techniques. Nevertheless, the observer variability in the expert's assessment can impact the quality quantification accuracy. Here, we aim to model the intra-observer variability in echo quality assessment as an aleatoric uncertainty modelling regression problem with the introduction of a novel method that handles the regression problem with categorical labels. A key feature of our design is that only a single forward pass is sufficient to estimate the level of uncertainty for the network output. Compared to the 0.11 ± 0.09 absolute error (in a scale from 0 to 1) archived by the conventional regression method, the proposed method brings the error down to 0.09 ± 0.08, where the improvement is statistically significant and equivalents to 5.7% test accuracy improvement. The simplicity of the proposed approach means that it could be generalized to other applications of deep learning in medical imaging, where there is often uncertainty in clinical labels.


Asunto(s)
Ecocardiografía , Redes Neurales de la Computación , Humanos , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Incertidumbre
3.
Proc SPIE Int Soc Opt Eng ; 101352017 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-28615794

RESUMEN

Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.

4.
Int J Comput Assist Radiol Surg ; 12(7): 1189-1198, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28361323

RESUMEN

PURPOSE: Percutaneous spinal needle insertion procedures often require proper identification of the vertebral level to effectively and safely deliver analgesic agents. The current clinical method involves "blind" identification of the vertebral level through manual palpation of the spine, which has only 30% reported accuracy. Therefore, there is a need for better anatomical identification prior to needle insertion. METHODS: A real-time system was developed to identify the vertebral level from a sequence of ultrasound images, following a clinical imaging protocol. The system uses a deep convolutional neural network (CNN) to classify transverse images of the lower spine. Several existing CNN architectures were implemented, utilizing transfer learning, and compared for adequacy in a real-time system. In the system, the CNN output is processed, using a novel state machine, to automatically identify vertebral levels as the transducer moves up the spine. Additionally, a graphical display was developed and integrated within 3D Slicer. Finally, an augmented reality display, projecting the level onto the patient's back, was also designed. A small feasibility study [Formula: see text] evaluated performance. RESULTS: The proposed CNN successfully discriminates ultrasound images of the sacrum, intervertebral gaps, and vertebral bones, achieving 88% 20-fold cross-validation accuracy. Seventeen of 20 test ultrasound scans had successful identification of all vertebral levels, processed at real-time speed (40 frames/s). CONCLUSION: A machine learning system is presented that successfully identifies lumbar vertebral levels. The small study on human subjects demonstrated real-time performance. A projection-based augmented reality display was used to show the vertebral level directly on the subject adjacent to the puncture site.


Asunto(s)
Anestesia Epidural/métodos , Vértebras Lumbares/diagnóstico por imagen , Redes Neurales de la Computación , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador , Columna Vertebral/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA