Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Brain Cogn ; 153: 105775, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34333283

RESUMEN

Understanding the neural processes underlying the comprehension of visual images and sentences remains a major open challenge in cognitive neuroscience. We previously demonstrated with fMRI and DTI that comprehension of visual images and sentences describing human activities recruits a common extended parietal-temporal-frontal semantic system. The current research tests the hypothesis that this common semantic system will display similar ERP profiles during processing in these two modalities, providing further support for the common comprehension system. We recorded EEG from naïve subjects as they saw simple narratives made up of a first visual image depicting a human event, followed by a second image that was either a sequentially coherent narrative follow-up, or not, of the first. Incoherent second stimuli depict the same agents but shifted into a different situation. In separate blocks of trials the same protocol was presented using narrative sentence stimuli. Part of the novelty is the comparison of sentence and visual narrative responses. ERPs revealed common neural profiles for narrative processing across image and sentence modalities in the form of early and late central and frontal positivities in response to narrative incoherence. There was an additional posterior positivity only for sentences in a very late window. These results are discussed in the context of ERP signatures of narrative processing and meaning, and a current model of narrative comprehension.


Asunto(s)
Comprensión , Lenguaje , Electroencefalografía , Potenciales Evocados , Humanos , Imagen por Resonancia Magnética , Semántica
2.
Biol Open ; 2(6): 613-28, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23789112

RESUMEN

Not much is known about the molecular and functional features of pluripotent stem cells (PSCs) in rabbits. To address this, we derived and characterized 2 types of rabbit PSCs from the same breed of New Zealand White rabbits: 4 lines of embryonic stem cells (rbESCs), and 3 lines of induced PSCs (rbiPSCs) that were obtained by reprogramming adult skin fibroblasts. All cell lines required fibroblast growth factor 2 for their growth and proliferation. All rbESC lines showed molecular and functional properties typically associated with primed pluripotency. The cell cycle of rbESCs had a prolonged G1 phase and a DNA damage checkpoint before entry into the S phase, which are the 2 features typically associated with the somatic cell cycle. In contrast, the rbiPSC lines exhibited some characteristics of naïve pluripotency, including resistance to single-cell dissociation by trypsin, robust activity of the distal enhancer of the mouse Oct4 gene, and expression of naïve pluripotency-specific genes, as defined in rodents. According to gene expression profiles, rbiPSCs were closer to the rabbit inner cell mass (ICM) than rbESCs. Furthermore, rbiPSCs were capable of colonizing the ICM after aggregation with morulas. Therefore, we propose that rbiPSCs self-renew in an intermediate state between naïve and primed pluripotency, which represents a key step toward the generation of bona fide naïve PSC lines in rabbits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA