Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
2.
Eur J Pharmacol ; 977: 176675, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38825303

RESUMEN

BACKGROUND: Ibrutinib, a Bruton's tyrosine kinase inhibitor used in cancer therapy, exerts ventricular proarrhythmic effects; however, the underlying mechanisms remain unclear. Excitation-contraction coupling (E-C) disorders are pivotal for the genesis of ventricular arrhythmias (VAs), which arise mainly from the right ventricular outflow tract (RVOT). In this study, we aimed to comprehensively investigate whether ibrutinib regulates the electromechanical activities of the RVOT, leading to enhanced arrhythmogenesis, and explore the underlying mechanisms. METHODS: We utilized conventional microelectrodes to synchronously record electrical and mechanical responses in rabbit RVOT tissue preparations before and after treatment with ibrutinib (10, 50, and 100 nM) and investigated their electromechanical interactions and arrhythmogenesis during programmed electrical stimulation. The fluorometric ratio technique was used to measure intracellular calcium concentration in isolated RVOT myocytes. RESULTS: Ibrutinib (10-100 nM) shortened the action potential duration. Ibrutinib at 100 nM significantly increased pacing-induced ventricular tachycardia (VT) (from 0% to 62.5%, n = 8, p = 0.025). Comparisons between pacing-induced VT and non-VT episodes demonstrated that VT episodes had a greater increase in contractility than that of non-VT episodes (402.1 ± 41.4% vs. 232.4 ± 29.2%, p = 0.003). The pretreatment of ranolazine (10 µM, a late sodium current blocker) prevented the occurrence of ibrutinib-induced VAs. Ibrutinib (100 nM) increased late sodium current, reduced intracellular calcium transients, and enhanced calcium leakage in RVOT myocytes. CONCLUSION: Ibrutinib increased the risk of VAs in the RVOT due to dysregulated electromechanical responses, which can be attenuated by ranolazine or apamin.


Asunto(s)
Potenciales de Acción , Adenina , Agammaglobulinemia Tirosina Quinasa , Piperidinas , Inhibidores de Proteínas Quinasas , Animales , Piperidinas/farmacología , Conejos , Adenina/análogos & derivados , Adenina/farmacología , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/efectos adversos , Potenciales de Acción/efectos de los fármacos , Pirimidinas/farmacología , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/fisiopatología , Masculino , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Calcio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Taquicardia Ventricular/fisiopatología , Pirazoles/farmacología , Acoplamiento Excitación-Contracción/efectos de los fármacos
4.
Transl Res ; 268: 1-12, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38244770

RESUMEN

Interleukin (IL)-33, a cytokine involved in immune responses, can activate its receptor, suppression of tumorigenicity 2 (ST2), is elevated during atrial fibrillation (AF). However, the role of IL-33/ST2 signaling in atrial arrhythmia is unclear. This study explored the pathological effects of the IL-33/ST2 axis on atrial remodeling and arrhythmogenesis. Patch clamping, confocal microscopy, and Western blotting were used to analyze the electrical characteristics of and protein activity in atrial myocytes (HL-1) treated with recombinant IL-33 protein and/or ST2-neutralizing antibodies for 48 hrs. Telemetric electrocardiographic recordings, Masson's trichrome staining, and immunohistochemistry staining of the atrium were performed in mice receiving tail vein injections with nonspecific immunoglobulin (control), IL-33, and IL-33 combined with anti-ST2 antibody for 2 weeks. IL-33-treated HL-1 cells had a reduced action potential duration, lower L-type Ca2+ current, greater sarcoplasmic reticulum (SR) Ca2+ content, increased Na+/Ca2+ exchanger (NCX) current, elevation of K+ currents, and increased intracellular calcium transient. IL-33-treated HL-1 myocytes had greater activation of the calcium-calmodulin-dependent protein kinase II (CaMKII)/ryanodine receptor 2 (RyR2) axis and nuclear factor kappa B (NF-κB) / NLR family pyrin domain containing 3 (NLRP3) signaling than did control cells. IL-33 treated cells also had greater expression of Nav1.5, Kv1.5, NCX, and NLRP3 than did control cells. Pretreatment with neutralizing anti-ST2 antibody attenuated IL-33-mediated activation of CaMKII/RyR2 and NF-κB/NLRP3 signaling. IL-33-injected mice had more atrial ectopic beats and increased AF episodes, greater atrial fibrosis, and elevation of NF-κB/NLRP3 signaling than did controls or mice treated with IL-33 combined with anti-ST2 antibody. Thus, IL-33 recombinant protein treatment promotes atrial remodeling through ST2 signaling. Blocking the IL-33/ST2 axis might be an innovative therapeutic approach for patients with atrial arrhythmia and elevated serum IL-33.


Asunto(s)
Remodelación Atrial , Interleucina-33 , Miocitos Cardíacos , Animales , Masculino , Ratones , Potenciales de Acción/efectos de los fármacos , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/metabolismo , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/metabolismo , Remodelación Atrial/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Línea Celular , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/metabolismo , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/patología , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal
5.
Fundam Clin Pharmacol ; 38(2): 262-275, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37664898

RESUMEN

BACKGROUND: Metabolic stress predisposes to ventricular arrhythmias and sudden cardiac death. Right ventricular outflow tract (RVOT) is the common origin of ventricular arrhythmias. Adenosine monophosphate-regulated protein kinase (AMPK) activation is an important compensatory mechanism for cardiac remodeling during metabolic stress. OBJECTIVES: The purpose of this study was to access whether AMPK inhibition would modulate RVOT electrophysiology, calcium (Ca2+ ) regulation, and RVOT arrhythmogenesis or not. METHODS: Conventional microelectrodes were used to record electrical activity before and after compound C (10 µM, an AMPK inhibitor) in isoproterenol (1 µM)-treated rabbit RVOT tissue preparations under electrical pacing. Whole-cell patch-clamp and confocal microscopic examinations were performed in baseline and compound C-treated rabbit RVOT cardiomyocytes to investigate ionic currents and intracellular Ca2+ transients in isolated rabbit RVOT cardiomyocytes. RESULTS: Compound C decreased RVOT contractility, and reversed isoproterenol increased RVOT contractility. Compound C decreased the incidence, rate, and duration of isoproterenol-induced RVOT burst firing under rapid pacing. Compared to baseline, compound C-treated RVOT cardiomyocytes had a longer action potential duration, smaller intracellular Ca2+ transients, late sodium (Na+ ), peak L-type Ca2+ current density, Na+ -Ca2+ exchanger, transient outward potassium (K+ ) current, and rapid and slow delayed rectifier K+ currents. CONCLUSION: AMPK inhibition modulates RVOT electrophysiological characteristics and Ca2+ homeostasis, contributing to lower RVOT arrhythmogenic activity. Accordingly, AMPK inhibition might potentially reduce ventricular tachyarrhythmias.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Calcio , Animales , Conejos , Calcio/metabolismo , Adenosina Monofosfato , Isoproterenol/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Arritmias Cardíacas/tratamiento farmacológico , Miocitos Cardíacos/metabolismo , Homeostasis , Potenciales de Acción
6.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003332

RESUMEN

A ketogenic diet (KD) might alleviate patients with diabetic cardiomyopathy. However, the underlying mechanism remains unclear. Myocardial function and arrhythmogenesis are closely linked to calcium (Ca2+) homeostasis. We investigated the effects of a KD on Ca2+ homeostasis and electrophysiology in diabetic cardiomyopathy. Male Wistar rats were created to have diabetes mellitus (DM) using streptozotocin (65 mg/kg, intraperitoneally), and subsequently treated for 6 weeks with either a normal diet (ND) or a KD. Our electrophysiological and Western blot analyses assessed myocardial Ca2+ homeostasis in ventricular preparations in vivo. Unlike those on the KD, DM rats treated with an ND exhibited a prolonged QTc interval and action potential duration. Compared to the control and DM rats on the KD, DM rats treated with an ND also showed lower intracellular Ca2+ transients, sarcoplasmic reticular Ca2+ content, sodium (Na+)-Ca2+ exchanger currents (reverse mode), L-type Ca2+ contents, sarcoplasmic reticulum ATPase contents, Cav1.2 contents. Furthermore, these rats exhibited elevated ratios of phosphorylated to total proteins across multiple Ca2+ handling proteins, including ryanodine receptor 2 (RyR2) at serine 2808, phospholamban (PLB)-Ser16, and calmodulin-dependent protein kinase II (CaMKII). Additionally, DM rats treated with an ND demonstrated a higher frequency and incidence of Ca2+ leak, cytosolic reactive oxygen species, Na+/hydrogen-exchanger currents, and late Na+ currents than the control and DM rats on the KD. KD treatment may attenuate the effects of DM-dysregulated Na+ and Ca2+ homeostasis, contributing to its cardioprotection in DM.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Dieta Cetogénica , Humanos , Ratas , Masculino , Animales , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Remodelación Ventricular , Ratas Wistar , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sodio/metabolismo , Homeostasis , Retículo Sarcoplasmático/metabolismo , Diabetes Mellitus/metabolismo
7.
JAMA Netw Open ; 6(11): e2344535, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991761

RESUMEN

Importance: Catheter ablation for persistent atrial fibrillation (AF) has shown limited success. Objective: To determine whether AF drivers could be accurately identified by periodicity and similarity (PRISM) mapping ablation results for persistent AF when added to pulmonary vein isolation (PVI). Design, Setting, and Participants: This prospective randomized clinical trial was performed between June 1, 2019, and December 31, 2020, and included patients with persistent AF enrolled in 3 centers across Asia. Data were analyzed on October 1, 2022. Intervention: Patients were assigned to the PRISM-guided approach (group 1) or the conventional approach (group 2) at a 1:1 ratio. Main Outcomes and Measures: The primary outcome was freedom from AF or other atrial arrhythmia for longer than 30 seconds at 6 and 12 months. Results: A total of 170 patients (mean [SD] age, 62.0 [12.3] years; 136 men [80.0%]) were enrolled (85 patients in group 1 and 85 patients in group 2). More group 1 patients achieved freedom from AF at 12 months compared with group 2 patients (60 [70.6%] vs 40 [47.1%]). Multivariate analysis indicated that the PRISM-guided approach was associated with freedom from the recurrence of atrial arrhythmia (hazard ratio, 0.53 [95% CI, 0.33-0.85]). Conclusions and Relevance: The waveform similarity and recurrence pattern derived from high-density mapping might provide an improved guiding approach for ablation of persistent AF. Compared with the conventional procedure, this novel specific substrate ablation strategy reduced the frequency of recurrent AF and increased the likelihood of maintenance of sinus rhythm. Trial Registration: ClinicalTrials.gov Identifier: NCT05333952.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Masculino , Humanos , Persona de Mediana Edad , Fibrilación Atrial/cirugía , Estudios Prospectivos , Asia , Análisis Multivariante
8.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685906

RESUMEN

Glucagon-like peptide-1 (GLP-1) receptor agonists are associated with reduced atrial fibrillation risk, but the mechanisms underlying this association remain unclear. The GLP-1 receptor agonist directly impacts cardiac Ca2+ homeostasis, which is crucial in pulmonary vein (PV, the initiator of atrial fibrillation) arrhythmogenesis. This study investigated the effects of the GLP-1 receptor agonist on PV electrophysiology and Ca2+ homeostasis and elucidated the potential underlying mechanisms. Conventional microelectrodes and whole-cell patch clamp techniques were employed in rabbit PV tissues and single PV cardiomyocytes before and after GLP-1 (7-36) amide, a GLP-1 receptor agonist. Evaluations were conducted both with and without pretreatment with H89 (10 µM, an inhibitor of protein kinase A, PKA), KN93 (1 µM, an inhibitor of Ca2+/calmodulin-dependent protein kinase II, CaMKII), and KB-R7943 (10 µM, an inhibitor of Na+/Ca2+ exchanger, NCX). Results showed that GLP-1 (7-36) amide (at concentrations of 1, 10, and 100 nM) reduced PV spontaneous activity in a concentration-dependent manner without affecting sinoatrial node electrical activity. In single-cell experiments, GLP-1 (7-36) amide (at 10 nM) reduced L-type Ca2+ current, NCX current, and late Na+ current in PV cardiomyocytes without altering Na+ current. Additionally, GLP-1 (7-36) amide (at 10 nM) increased sarcoplasmic reticulum Ca2+ content in PV cardiomyocytes. Furthermore, the antiarrhythmic effects of GLP-1 (7-36) amide on PV automaticity were diminished when pretreated with H89, KN93, or KB-R7943. This suggests that the GLP-1 receptor agonist may exert its antiarrhythmic potential by regulating PKA, CaMKII, and NCX activity, as well as modulating intracellular Ca2+ homeostasis, thereby reducing PV arrhythmogenesis.


Asunto(s)
Fibrilación Atrial , Conservadores de la Densidad Ósea , Venas Pulmonares , Animales , Conejos , Receptor del Péptido 1 Similar al Glucagón , Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Antagonistas de Hormonas , Antiarrítmicos , Amidas , Proteínas Quinasas Dependientes de AMP Cíclico , Péptido 1 Similar al Glucagón/farmacología , Homeostasis
9.
Cells ; 12(6)2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36980218

RESUMEN

BACKGROUND: COVID-19 has a major impact on cardiovascular diseases and may lead to myocarditis or cardiac failure. The clove-like spike (S) protein of SARS-CoV-2 facilitates its transmission and pathogenesis. Cardiac mitochondria produce energy for key heart functions. We hypothesized that S1 would directly impair the functions of cardiomyocyte mitochondria, thus causing cardiac dysfunction. METHODS: Through the Seahorse Mito Stress Test and real-time ATP rate assays, we explored the mitochondrial bioenergetics in human cardiomyocytes (AC16). The cells were treated without (control) or with S1 (1 nM) for 24, 48, and 72 h and we observed the mitochondrial morphology using transmission electron microscopy and confocal fluorescence microscopy. Western blotting, XRhod-1, and MitoSOX Red staining were performed to evaluate the expression of proteins related to energetic metabolism and relevant signaling cascades, mitochondrial Ca2+ levels, and ROS production. RESULTS: The 24 h S1 treatment increased ATP production and mitochondrial respiration by increasing the expression of fatty-acid-transporting regulators and inducing more negative mitochondrial membrane potential (Δψm). The 72 h S1 treatment decreased mitochondrial respiration rates and Δψm, but increased levels of reactive oxygen species (ROS), mCa2+, and intracellular Ca2+. Electron microscopy revealed increased mitochondrial fragmentation/fission in AC16 cells treated for 72 h. The effects of S1 on ATP production were completely blocked by neutralizing ACE2 but not CD147 antibodies, and were partly attenuated by Mitotempo (1 µM). CONCLUSION: S1 might impair mitochondrial function in human cardiomyocytes by altering Δψm, mCa2+ overload, ROS accumulation, and mitochondrial dynamics via ACE2.


Asunto(s)
COVID-19 , Miocitos Cardíacos , Ratas , Animales , Humanos , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratas Sprague-Dawley , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Mitocondrias Cardíacas/metabolismo , Adenosina Trifosfato/metabolismo
11.
Eur J Pharmacol ; 941: 175493, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621600

RESUMEN

BACKGROUND: Excitation-contraction (E-C) coupling, the interaction of action potential duration (APD) and contractility, plays an essential role in arrhythmogenesis. We aimed to investigate the arrhythmogenic role of E-C coupling in the right ventricular outflow tract (RVOT) in the chloroquine-induced long QT syndrome. METHODS: Conventional microelectrodes were used to record electrical and mechanical activity simultaneously under electrical pacing (cycle lengths from 1000-100 ms) in rabbit RVOT tissue preparations before and after chloroquine with and without azithromycin. KB-R7943 (a Na+-Ca2+ exchanger [NCX] inhibitor), ranolazine (a late sodium current inhibitor), or MgSO4 were used to assess their pharmacological responses in the chloroquine-induced long QT syndrome. RESULTS: Sequential infusion of chloroquine and chloroquine plus azithromycin triggered ventricular tachycardia (VT) (33.7%) after rapid pacing compared to baseline (6.7%, p = 0.004). There were greater post-pacing increases of the first occurrence of contractility (ΔContractility) in the VT group (VT vs. non-VT: 521.2 ± 50.5% vs. 306.5 ± 26.8%, p < 0.001). There was no difference in the first occurrence of action potential at 90% repolarization (ΔAPD90) (VT vs. non-VT: 49.7 ± 7.4 ms vs. 51.8 ± 13.1 ms, p = 0.914). Pacing-induced VT could be suppressed to baseline levels by KB-R7943 or MgSO4. Ranolazine did not suppress pacing-induced VT in chloroquine-treated RVOT. ΔContractility was reduced by KB-R7943 and MgSO4, but not by ranolazine. CONCLUSION: ΔContractility (but not ΔAPD) played a crucial role in the genesis of pacing-induced VT in the long QT tissue model, which can be modulated by NCX (but not late sodium current) inhibition or MgSO4.


Asunto(s)
Síndrome de QT Prolongado , Taquicardia Ventricular , Animales , Conejos , Ranolazina/farmacología , Ranolazina/uso terapéutico , Potenciales de Acción/fisiología , Azitromicina/efectos adversos , Arritmias Cardíacas , Síndrome de QT Prolongado/inducido químicamente , Taquicardia Ventricular/tratamiento farmacológico , Sodio
12.
JACC Asia ; 2(3): 258-270, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36338407

RESUMEN

Background: Pulmonary hypertension is a disabling and life-threatening cardiovascular disease. Early detection of elevated pulmonary artery pressure (ePAP) is needed for prompt diagnosis and treatment to avoid detrimental consequences of pulmonary hypertension. Objectives: This study sought to develop an artificial intelligence (AI)-enabled electrocardiogram (ECG) model to identify patients with ePAP and related prognostic implications. Methods: From a hospital-based ECG database, the authors extracted the first pairs of ECG and transthoracic echocardiography taken within 2 weeks of each other from 41,097 patients to develop an AI model for detecting ePAP (PAP > 50 mm Hg by transthoracic echocardiography). The model was evaluated on independent data sets, including an external cohort of patients from Japan. Results: Tests of 10-fold cross-validation neural-network deep learning showed that the area under the receiver-operating characteristic curve of the AI model was 0.88 (sensitivity 81.0%; specificity 79.6%) for detecting ePAP. The diagnostic performance was consistent across age, sex, and various comorbidities (diagnostic odds ratio >8 for most factors examined). At 6-year follow-up, the patients predicted by the AI model to have ePAP were independently associated with higher cardiovascular mortality (HR: 3.69). Similar diagnostic performance and prediction for cardiovascular mortality could be replicated in the external cohort. Conclusions: The ECG-based AI model identified patients with ePAP and predicted their future risk for cardiovascular mortality. This model could serve as a useful clinical test to identify patients with pulmonary hypertension so that treatment can be initiated early to improve their survival prognosis.

13.
Exp Ther Med ; 24(6): 720, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36340605

RESUMEN

Mirabegron increases atrial fibrillation (AF) risk. The left atrium (LA) is the most critical 'substrate' for AF and has higher arrhythmogenesis compared with the right atrium (RA). The present study aimed to investigate the electrophysiological and arrhythmogenic effects of mirabegron on the LA and RA and clarify the potential underlying mechanisms. Conventional microelectrodes, a whole-cell patch clamp and a confocal microscope were used in rabbit LA and RA preparations or single LA and RA myocytes before and after mirabegron administration with or without cotreatment with KT5823 [a cyclic adenosine monophosphate (cAMP)-dependent protein kinase inhibitor]. The baseline action potential duration at repolarization extents of 20 and 50% (but not 90%) were shorter in the LA than in the RA. Mirabegron at 0.1 and 1 µM (but not 0.01 µM) reduced the action potential duration at repolarization extents of 20 and 50% in the LA and RA. Mirabegron (0.1 µM) increased the occurrence of tachypacing-induced burst firing in the LA but not in the RA, where it was suppressed by KT5823 (1 µM). Mirabegron (0.1 µM) increased the L-type Ca2+ current (ICa-L), ultrarapid component of delayed rectifier K+ current (IKur), Ca2+ transients and sarcoplasmic reticulum Ca2+ content but reduced transient outward K+ current (Ito) in the LA myocytes. However, mirabegron did not change the Na+ current and delayed rectifier K+ current in the LA myocytes. Moreover, pretreatment with KT5823 (1 µM) inhibited the effects of mirabegron on ICa-L, Ito and IKur in the LA myocytes. Furthermore, in the RA myocytes, mirabegron reduced ICa-L but did not change Ito. In conclusion, mirabegron differentially regulates electrophysiological characteristics in the LA and RA. Through the activation of the cAMP-dependent protein kinase pathway and induction of Ca2+ dysregulation, mirabegron may increase LA arrhythmogenesis, leading to increased AF risk.

14.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36430541

RESUMEN

Adrenomedullin, a peptide with vasodilatory, natriuretic, and diuretic effects, may be a novel agent for treating heart failure. Heart failure is associated with an increased risk of atrial fibrillation (AF), but the effects of adrenomedullin on atrial arrhythmogenesis remain unclear. This study investigated whether adrenomedullin modulates the electrophysiology of the atria (AF substrate) or pulmonary vein (PV; AF trigger) arrhythmogenesis. Conventional microelectrode or whole-cell patch clamps were used to study the effects of adrenomedullin (10, 30, and 100 pg/mL) on the electrical activity, mechanical response, and ionic currents of isolated rabbit PV and sinoatrial node tissue preparations and single PV cardiomyocytes. At 30 and 100 pg/mL, adrenomedullin significantly reduced the spontaneous beating rate of the PVs from 2.0 ± 0.4 to 1.3 ± 0.5 and 1.1 ± 0.5 Hz (reductions of 32.9% ± 7.1% and 44.9 ± 8.4%), respectively, and reduced PV diastolic tension by 12.8% ± 4.1% and 14.5% ± 4.1%, respectively. By contrast, adrenomedullin did not affect sinoatrial node beating. In the presence of L-NAME (a nitric oxide synthesis inhibitor, 100 µM), adrenomedullin (30 pg/mL) did not affect the spontaneous beating rate or diastolic tension of the PVs. In the single-cell experiments, adrenomedullin (30 pg/mL) significantly reduced the L-type calcium current (ICa-L) and reverse-mode current of the sodium-calcium exchanger (NCX). Adrenomedullin reduces spontaneous PV activity and PV diastolic tension by reducing ICa-L and NCX current and thus may be useful for treating atrial tachyarrhythmia.


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Venas Pulmonares , Animales , Conejos , Adrenomedulina/farmacología , Atrios Cardíacos
15.
Biomedicines ; 10(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36359250

RESUMEN

Lithium intoxication induces Brugada-pattern ECG, ventricular arrhythmia, and sudden death with the predominant preference for the male over the female gender. This study investigated the mechanisms of gender difference in lithium-induced arrhythmogenesis. The ECG parameters were recorded in male and female rabbits before and after the intravenous administration of lithium chloride (LiCl) (1, 3, 10 mmol/kg). Patch clamps were used to study the sodium current (INa) and late sodium current (INa-late) in the isolated single male and female right ventricular outflow tract (RVOT) cardiomyocytes before and after LiCl. Male rabbits (n = 9) were more prone to developing lithium-induced Brugada-pattern ECG changes (incomplete right bundle branch block, ST elevation and QRS widening) with fatal arrhythmia (66.7% vs. 0%, p = 0.002) than in female (n = 7) rabbits at 10 mmol/kg (but not 1 or 3 mmol/kg). Compared to those in the female RVOT cardiomyocytes, LiCl (100 µM) reduced INa to a greater extent and increased INa-late in the male RVOT cardiomyocytes. Moreover, in the presence of ranolazine (the INa-late inhibitor, 3.6 mg/kg iv loading, followed by a second iv bolus 6.0 mg/kg administered 30 min later, n = 5), LiCl (10 mmol/kg) did not induce Brugada-pattern ECG changes (p < 0.005). The male gender is much predisposed to lithium-induced Brugada-pattern ECG changes with a greater impact on INa and INa-late in RVOT cardiomyocytes. Targeting INa-late may be a potential therapeutic strategy for Brugada syndrome-related ventricular tachyarrhythmia.

16.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232308

RESUMEN

Atrial arrhythmias are considered prominent phenomena in pulmonary arterial hypertension (PAH) resulting from atrial electrical and structural remodeling. Endothelin (ET)-1 levels correlate with PAH severity and are associated with atrial remodeling and arrhythmia. In this study, hemodynamic measurement, western blot analysis, and histopathology were performed in the control and monocrotaline (MCT, 60 mg/kg)-induced PAH rabbits. Conventional microelectrodes were used to simultaneously record the electrical activity in the isolated sinoatrial node (SAN) and right atrium (RA) tissue preparations before and after ET-1 (10 nM) or BQ-485 (an ET-A receptor antagonist, 100 nM) perfusion. MCT-treated rabbits showed an increased relative wall thickness in the pulmonary arterioles, mean cell width, cross-sectional area of RV myocytes, and higher right ventricular systolic pressure, which were deemed to have PAH. Compared to the control, the spontaneous beating rate of SAN-RA preparations was faster in the MCT-induced PAH group, which can be slowed down by ET-1. MCT-induced PAH rabbits had a higher incidence of sinoatrial conduction blocks, and ET-1 can induce atrial premature beats or short runs of intra-atrial reentrant tachycardia. BQ 485 administration can mitigate ET-1-induced RA arrhythmogenesis in MCT-induced PAH. The RA specimens from MCT-induced PAH rabbits had a smaller connexin 43 and larger ROCK1 and phosphorylated Akt than the control, and similar PKG and Akt to the control. In conclusion, ET-1 acts as a trigger factor to interact with the arrhythmogenic substrate to initiate and maintain atrial arrhythmias in PAH. ET-1/ET-A receptor/ROCK signaling may be a target for therapeutic interventions to treat PAH-induced atrial arrhythmias.


Asunto(s)
Monocrotalina , Hipertensión Arterial Pulmonar , Animales , Arritmias Cardíacas , Conexina 43/farmacología , Modelos Animales de Enfermedad , Endotelina-1 , Hipertensión Pulmonar Primaria Familiar/patología , Monocrotalina/toxicidad , Proteínas Proto-Oncogénicas c-akt , Arteria Pulmonar/patología , Conejos
17.
Cells ; 11(18)2022 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-36139490

RESUMEN

Atrial fibrillation (AF) is the most common type of sustained arrhythmia in diabetes mellitus (DM). Its morbidity and mortality rates are high, and its prevalence will increase as the population ages. Despite expanding knowledge on the pathophysiological mechanisms of AF, current pharmacological interventions remain unsatisfactory; therefore, novel findings on the underlying mechanism are required. A growing body of evidence suggests that an altered energy metabolism is closely related to atrial arrhythmogenesis, and this finding engenders novel insights into the pathogenesis of the pathophysiology of AF. In this review, we provide comprehensive information on the mechanistic insights into the cardiac energy metabolic changes, altered substrate oxidation rates, and mitochondrial dysfunctions involved in atrial arrhythmogenesis, and suggest a promising advanced new therapeutic approach to treat patients with AF.


Asunto(s)
Fibrilación Atrial , Diabetes Mellitus , Metabolismo Energético , Humanos
18.
Circ Cardiovasc Qual Outcomes ; 15(8): e008360, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35959675

RESUMEN

BACKGROUND: Concealed left ventricular hypertrophy (LVH) is a prevalent condition that is correlated with a substantial risk of cardiovascular events and mortality, especially in young to middle-aged adults. Early identification of LVH is warranted. In this work, we aimed to develop an artificial intelligence (AI)-enabled model for early detection and risk stratification of LVH using 12-lead ECGs. METHODS: By deep learning techniques on the ECG recordings from 28 745 patients (20-60 years old), the AI model was developed to detect verified LVH from transthoracic echocardiography and evaluated on an independent cohort. Two hundred twenty-five patients from Japan were externally validated. Cardiologists' diagnosis of LVH was based on conventional ECG criteria. The area under the curve (AUC), sensitivity, and specificity were applied to evaluate the model performance. A Cox regression model estimated the independent effects of AI-predicted LVH on cardiovascular or all-cause death. RESULTS: The AUC of the AI model in diagnosing LVH was 0.89 (sensitivity: 90.3%, specificity: 69.3%), which was significantly better than that of the cardiologists' diagnosis (AUC, 0.64). In the second independent cohort, the diagnostic performance of the AI model was consistent (AUC, 0.86; sensitivity: 85.4%, specificity: 67.0%). After a follow-up of 6 years, AI-predicted LVH was independently associated with higher cardiovascular or all-cause mortality (hazard ratio, 1.91 [1.04-3.49] and 1.54 [1.20-1.97], respectively). The predictive power of the AI model for mortality was consistently valid among patients of different ages, sexes, and comorbidities, including hypertension, diabetes, stroke, heart failure, and myocardial infarction. Last, we also validated the model in the international independent cohort from Japan (AUC, 0.83). CONCLUSIONS: The AI model improved the detection of LVH and mortality prediction in the young to middle-aged population and represented an attractive tool for risk stratification. Early identification by the AI model gives every chance for timely treatment to reverse adverse outcomes.


Asunto(s)
Hipertensión , Hipertrofia Ventricular Izquierda , Adulto , Inteligencia Artificial , Ecocardiografía , Electrocardiografía , Humanos , Hipertensión/complicaciones , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/epidemiología , Persona de Mediana Edad , Adulto Joven
19.
Acta Physiol (Oxf) ; 234(3): e13784, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34995420

RESUMEN

AIM: Galectin-3 (Gal-3) is a biomarker of atrial fibrillation (AF) that mediates atrial inflammation. CD98 is the membrane surface receptor for Gal-3. Nevertheless, the role of the Gal-3/CD98 axis in atrial arrhythmogenesis is unclear. In this study, we investigated the effects of Gal-3/CD98 signalling on atrial pathogenesis. METHODS: Whole cell patch clamp and western blotting were used to analyse calcium/potassium homeostasis and calcium-related signalling in Gal-3-administrated HL-1 atrial cardiomyocytes with/without CD98 neutralized antibodies. Telemetry electrocardiographic recording, Masson's trichrome staining and immunohistochemistry staining of atrium were obtained from mice having received tail-vein injections with Gal-3. RESULTS: Gal-3-treated HL-1 myocytes had a shorter action potential duration, smaller L-type calcium current, increased sarcoplasmic reticulum (SR) calcium content, Na+ /Ca2+ exchanger (NCX) current, transient outward potassium current, and ultrarapid delayed rectifier potassium current than control cells had. Gal-3-treated HL-1 myocytes had greater levels of SR Ca2+ ATPase, NCX, Nav1.5, and NLR family pyrin domain containing 3 (NLRP3) expression and increased calcium/calmodulin-dependent protein kinase II (CaMKII), ryanodine receptor 2 (RyR2), and nuclear factor kappa B (NF-κB) phosphorylation than control cells had. Gal-3-mediated activation of CaMKII/RyR2 pathway was diminished in the cotreatment of anti-CD98 antibodies. Mice that were injected with Gal-3 had more atrial ectopic beats, increased atrial fibrosis, and activated NF-κB/NLRP3 signalling than did control mice (nonspecific immunoglobulin) or mice treated with Gal-3 and anti-CD98 antibodies. CONCLUSION: Gal-3 recombinant protein administration increases atrial fibrosis and arrhythmogenesis through CD98 signalling. Targeting Gal-3/CD98 axis might be a novel therapeutic strategy for patients with AF and high Gal-3 levels.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Proteína-1 Reguladora de Fusión , Galectina 3 , Animales , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Calcio/metabolismo , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Fibrosis , Proteína-1 Reguladora de Fusión/metabolismo , Galectina 3/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Potasio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Intercambiador de Sodio-Calcio/metabolismo
20.
Can J Cardiol ; 38(2): 152-159, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34461230

RESUMEN

BACKGROUND: Brugada syndrome is a major cause of sudden cardiac death in young people and has distinctive electrocardiographic (ECG) features. We aimed to develop a deep learning-enabled ECG model for automatic screening for Brugada syndrome to identify these patients at an early point in time, thus allowing for life-saving therapy. METHODS: A total of 276 ECGs with a type 1 Brugada ECG pattern (276 type 1 Brugada ECGs and another randomly retrieved 276 non-Brugada type ECGs for 1:1 allocation) were extracted from the hospital-based ECG database for a 2-stage analysis with a deep learning model. After trained network for identifying right bundle branch block pattern, we transferred the first-stage learning to the second task to diagnose the type 1 Brugada ECG pattern. The diagnostic performance of the deep learning model was compared with that of board-certified practicing cardiologists. The model was further validated in an independent ECG data set collected from hospitals in Taiwan and Japan. RESULTS: The diagnoses by the deep learning model (area under the receiver operating characteristic curve [AUC] 0.96, sensitivity 88.4%, specificity 89.1%) were highly consistent with the standard diagnoses (kappa coefficient 0.78). However, the diagnoses by the cardiologists were significantly different from the standard diagnoses, with only moderate consistency (kappa coefficient 0.63). In the independent ECG cohort, the deep learning model still reached a satisfactory diagnostic performance (AUC 0.89, sensitivity 86.0%, specificity 90.0%). CONCLUSIONS: We present the first deep learning-enabled ECG model for diagnosing Brugada syndrome, which appears to be a robust screening tool with a diagnostic potential rivalling trained physicians.


Asunto(s)
Síndrome de Brugada/diagnóstico , Aprendizaje Profundo , Diagnóstico por Computador/métodos , Electrocardiografía , Enfermedades Raras , Adolescente , Adulto , Síndrome de Brugada/epidemiología , Síndrome de Brugada/genética , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Taiwán/epidemiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA