Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
PLoS Biol ; 22(9): e3002834, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39283942

RESUMEN

Dengue virus (DENV) is currently causing epidemics of unprecedented scope in endemic settings and expanding to new geographical areas. It is therefore critical to track this virus using genomic surveillance. However, the complex patterns of viral genomic diversity make it challenging to use the existing genotype classification system. Here, we propose adding 2 sub-genotypic levels of virus classification, named major and minor lineages. These lineages have high thresholds for phylogenetic distance and clade size, rendering them stable between phylogenetic studies. We present assignment tools to show that the proposed lineages are useful for regional, national, and subnational discussions of relevant DENV diversity. Moreover, the proposed lineages are robust to classification using partial genome sequences. We provide a standardized neutral descriptor of DENV diversity with which we can identify and track lineages of potential epidemiological and/or clinical importance. Information about our lineage system, including methods to assign lineages to sequence data and propose new lineages, can be found at: dengue-lineages.org.


Asunto(s)
Virus del Dengue , Dengue , Genoma Viral , Filogenia , Virus del Dengue/genética , Virus del Dengue/clasificación , Dengue/virología , Dengue/epidemiología , Humanos , Genotipo , Genómica/métodos , Variación Genética , Terminología como Asunto
2.
medRxiv ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39072046

RESUMEN

Global dengue cases rapidly rose to record levels in 2023-24. We investigated this trend in Valle del Cauca, Colombia to determine if specific dengue virus serotypes or lineages were responsible for the large outbreak. We detected all four serotypes and multiple lineages, suggesting that other factors, such as climatic conditions, are likely responsible.

3.
medRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798319

RESUMEN

Dengue virus (DENV) is currently causing epidemics of unprecedented scope in endemic settings and expanding to new geographical areas. It is therefore critical to track this virus using genomic surveillance. However, the complex patterns of viral genomic diversity make it challenging to use the existing genotype classification system. Here we propose adding two sub-genotypic levels of virus classification, named major and minor lineages. These lineages have high thresholds for phylogenetic distance and clade size, rendering them stable between phylogenetic studies. We present an assignment tool to show that the proposed lineages are useful for regional, national and sub-national discussions of relevant DENV diversity. Moreover, the proposed lineages are robust to classification using partial genome sequences. We provide a standardized neutral descriptor of DENV diversity with which we can identify and track lineages of potential epidemiological and/or clinical importance. Information about our lineage system, including methods to assign lineages to sequence data and propose new lineages, can be found at: dengue-lineages.org.

4.
BMC Genomics ; 25(1): 433, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693476

RESUMEN

BACKGROUND: The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. RESULTS: We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 10-100 RNA copies/µL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. CONCLUSIONS: DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.


Asunto(s)
Virus del Dengue , Genoma Viral , Serogrupo , Secuenciación Completa del Genoma , Virus del Dengue/genética , Virus del Dengue/aislamiento & purificación , Virus del Dengue/clasificación , Secuenciación Completa del Genoma/métodos , Humanos , Genotipo , Dengue/virología , Dengue/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Viral/genética
5.
Nat Commun ; 15(1): 3508, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664380

RESUMEN

Dengue is the most prevalent mosquito-borne viral disease in humans, and cases are continuing to rise globally. In particular, islands in the Caribbean have experienced more frequent outbreaks, and all four dengue virus (DENV) serotypes have been reported in the region, leading to hyperendemicity and increased rates of severe disease. However, there is significant variability regarding virus surveillance and reporting between islands, making it difficult to obtain an accurate understanding of the epidemiological patterns in the Caribbean. To investigate this, we used travel surveillance and genomic epidemiology to reconstruct outbreak dynamics, DENV serotype turnover, and patterns of spread within the region from 2009-2022. We uncovered two recent DENV-3 introductions from Asia, one of which resulted in a large outbreak in Cuba, which was previously under-reported. We also show that while outbreaks can be synchronized between islands, they are often caused by different serotypes. Our study highlights the importance of surveillance of infected travelers to provide a snapshot of local introductions and transmission in areas with limited local surveillance and suggests that the recent DENV-3 introductions may pose a major public health threat in the region.


Asunto(s)
Virus del Dengue , Dengue , Brotes de Enfermedades , Serogrupo , Viaje , Virus del Dengue/genética , Virus del Dengue/clasificación , Virus del Dengue/aislamiento & purificación , Dengue/epidemiología , Dengue/virología , Dengue/transmisión , Humanos , Región del Caribe/epidemiología , Viaje/estadística & datos numéricos , Filogenia , Monitoreo Epidemiológico
6.
Emerg Infect Dis ; 30(2): 376-379, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38232709

RESUMEN

During May 2022-April 2023, dengue virus serotype 3 was identified among 601 travel-associated and 61 locally acquired dengue cases in Florida, USA. All 203 sequenced genomes belonged to the same genotype III lineage and revealed potential transmission chains in which most locally acquired cases occurred shortly after introduction, with little sustained transmission.


Asunto(s)
Virus del Dengue , Dengue , Humanos , Virus del Dengue/genética , Dengue/epidemiología , Florida/epidemiología , Viaje , Secuencia de Bases , Genotipo , Serogrupo , Filogenia
7.
medRxiv ; 2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986857

RESUMEN

Dengue is the most prevalent mosquito-borne viral disease in humans, and cases are continuing to rise globally. In particular, islands in the Caribbean have experienced more frequent outbreaks, and all four dengue virus (DENV) serotypes have been reported in the region, leading to hyperendemicity and increased rates of severe disease. However, there is significant variability regarding virus surveillance and reporting between islands, making it difficult to obtain an accurate understanding of the epidemiological patterns in the Caribbean. To investigate this, we used travel surveillance and genomic epidemiology to reconstruct outbreak dynamics, DENV serotype turnover, and patterns of spread within the region from 2009-2022. We uncovered two recent DENV-3 introductions from Asia, one of which resulted in a large outbreak in Cuba, which was previously under-reported. We also show that while outbreaks can be synchronized between islands, they are often caused by different serotypes. Our study highlights the importance of surveillance of infected travelers to provide a snapshot of local introductions and transmission in areas with limited local surveillance and suggests that the recent DENV-3 introductions may pose a major public health threat in the region.

8.
Water Res ; 247: 120804, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37925861

RESUMEN

The world has moved into a new stage of managing the SARS-CoV-2 pandemic with minimal restrictions and reduced testing in the population, leading to reduced genomic surveillance of virus variants in individuals. Wastewater-based epidemiology (WBE) can provide an alternative means of tracking virus variants in the population but decision-makers require confidence that it can be applied to a national scale and is comparable to individual testing data. We analysed 19,911 samples from 524 wastewater sites across England at least twice a week between November 2021 and February 2022, capturing sewage from >70% of the English population. We used amplicon-based sequencing and the phylogeny based de-mixing tool Freyja to estimate SARS-CoV-2 variant frequencies and compared these to the variant dynamics observed in individual testing data from clinical and community settings. We show that wastewater data can reconstruct the spread of the Omicron variant across England since November 2021 in close detail and aligns closely with epidemiological estimates from individual testing data. We also show the temporal and spatial spread of Omicron within London. Our wastewater data further reliably track the transition between Omicron subvariants BA1 and BA2 in February 2022 at regional and national levels. Our demonstration that WBE can track the fast-paced dynamics of SARS-CoV-2 variant frequencies at a national scale and closely match individual testing data in time shows that WBE can reliably fill the monitoring gap left by reduced individual testing in a more affordable way.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , COVID-19/epidemiología , Genómica , Inglaterra/epidemiología
9.
medRxiv ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873191

RESUMEN

Background: The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. Results: We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 101-102 RNA copies/µL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. Conclusions: DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.

11.
Science ; 381(6655): 336-343, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37471538

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) now arise in the context of heterogeneous human connectivity and population immunity. Through a large-scale phylodynamic analysis of 115,622 Omicron BA.1 genomes, we identified >6,000 introductions of the antigenically distinct VOC into England and analyzed their local transmission and dispersal history. We find that six of the eight largest English Omicron lineages were already transmitting when Omicron was first reported in southern Africa (22 November 2021). Multiple datasets show that importation of Omicron continued despite subsequent restrictions on travel from southern Africa as a result of export from well-connected secondary locations. Initiation and dispersal of Omicron transmission lineages in England was a two-stage process that can be explained by models of the country's human geography and hierarchical travel network. Our results enable a comparison of the processes that drive the invasion of Omicron and other VOCs across multiple spatial scales.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , África Austral , COVID-19/transmisión , COVID-19/virología , Genómica , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Filogenia
12.
Curr Biol ; 33(12): 2515-2527.e6, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37295427

RESUMEN

Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, similar to previous years, cases were driven by multiple independent but short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019, although the ecology of EEEV is complex and further data is required to explore these in more detail. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.


Asunto(s)
Culicidae , Virus de la Encefalitis Equina del Este , Encefalomielitis Equina , Pájaros Cantores , Animales , Caballos , Humanos , Virus de la Encefalitis Equina del Este/genética , Mosquitos Vectores , Encefalomielitis Equina/epidemiología , Encefalomielitis Equina/veterinaria , Massachusetts/epidemiología , Brotes de Enfermedades/veterinaria
13.
PLoS Pathog ; 19(4): e1011348, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37071654

RESUMEN

Since the latter part of 2020, SARS-CoV-2 evolution has been characterised by the emergence of viral variants associated with distinct biological characteristics. While the main research focus has centred on the ability of new variants to increase in frequency and impact the effective reproductive number of the virus, less attention has been placed on their relative ability to establish transmission chains and to spread through a geographic area. Here, we describe a phylogeographic approach to estimate and compare the introduction and dispersal dynamics of the main SARS-CoV-2 variants - Alpha, Iota, Delta, and Omicron - that circulated in the New York City area between 2020 and 2022. Notably, our results indicate that Delta had a lower ability to establish sustained transmission chains in the NYC area and that Omicron (BA.1) was the variant fastest to disseminate across the study area. The analytical approach presented here complements non-spatially-explicit analytical approaches that seek a better understanding of the epidemiological differences that exist among successive SARS-CoV-2 variants of concern.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/virología , Ciudad de Nueva York/epidemiología , SARS-CoV-2/genética
14.
Cell Host Microbe ; 31(6): 861-873, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-36921604

RESUMEN

The COVID-19 pandemic galvanized the field of virus genomic surveillance, demonstrating its utility for public health. Now, we must harness the momentum that led to increased infrastructure, training, and political will to build a sustainable global genomic surveillance network for other epidemic and endemic viruses. We suggest a generalizable modular sequencing framework wherein users can easily switch between virus targets to maximize cost-effectiveness and maintain readiness for new threats. We also highlight challenges associated with genomic surveillance and when global inequalities persist. We propose solutions to mitigate some of these issues, including training and multilateral partnerships. Exploring alternatives to clinical sequencing can also reduce the cost of surveillance programs. Finally, we discuss how establishing genomic surveillance would aid control programs and potentially provide a warning system for outbreaks, using a global respiratory virus (RSV), an arbovirus (dengue virus), and a regional zoonotic virus (Lassa virus) as examples.


Asunto(s)
COVID-19 , Virus , Humanos , Pandemias , Brotes de Enfermedades , Salud Pública
15.
medRxiv ; 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36945576

RESUMEN

Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans, and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, like previous years, cases were driven by frequent short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.

16.
PLOS Glob Public Health ; 3(2): e0001455, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36963002

RESUMEN

The COVID-19 pandemic highlighted the importance of global genomic surveillance to monitor the emergence and spread of SARS-CoV-2 variants and inform public health decision-making. Until December 2020 there was minimal capacity for viral genomic surveillance in most Caribbean countries. To overcome this constraint, the COVID-19: Infectious disease Molecular epidemiology for PAthogen Control & Tracking (COVID-19 IMPACT) project was implemented to establish rapid SARS-CoV-2 whole genome nanopore sequencing at The University of the West Indies (UWI) in Trinidad and Tobago (T&T) and provide needed SARS-CoV-2 sequencing services for T&T and other Caribbean Public Health Agency Member States (CMS). Using the Oxford Nanopore Technologies MinION sequencing platform and ARTIC network sequencing protocols and bioinformatics pipeline, a total of 3610 SARS-CoV-2 positive RNA samples, received from 17 CMS, were sequenced in-situ during the period December 5th 2020 to December 31st 2021. Ninety-one Pango lineages, including those of five variants of concern (VOC), were identified. Genetic analysis revealed at least 260 introductions to the CMS from other global regions. For each of the 17 CMS, the percentage of reported COVID-19 cases sequenced by the COVID-19 IMPACT laboratory ranged from 0·02% to 3·80% (median = 1·12%). Sequences submitted to GISAID by our study represented 73·3% of all SARS-CoV-2 sequences from the 17 CMS available on the database up to December 31st 2021. Increased staffing, process and infrastructural improvement over the course of the project helped reduce turnaround times for reporting to originating institutions and sequence uploads to GISAID. Insights from our genomic surveillance network in the Caribbean region directly influenced non-pharmaceutical countermeasures in the CMS countries. However, limited availability of associated surveillance and clinical data made it challenging to contextualise the observed SARS-CoV-2 diversity and evolution, highlighting the need for development of infrastructure for collecting and integrating genomic sequencing data and sample-associated metadata.

17.
Cell Rep Med ; 4(2): 100943, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36791724

RESUMEN

The chronic infection hypothesis for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant emergence is increasingly gaining credence following the appearance of Omicron. Here, we investigate intrahost evolution and genetic diversity of lineage B.1.517 during a SARS-CoV-2 chronic infection lasting for 471 days (and still ongoing) with consistently recovered infectious virus and high viral genome copies. During the infection, we find an accelerated virus evolutionary rate translating to 35 nucleotide substitutions per year, approximately 2-fold higher than the global SARS-CoV-2 evolutionary rate. This intrahost evolution results in the emergence and persistence of at least three genetically distinct genotypes, suggesting the establishment of spatially structured viral populations continually reseeding different genotypes into the nasopharynx. Finally, we track the temporal dynamics of genetic diversity to identify advantageous mutations and highlight hallmark changes for chronic infection. Our findings demonstrate that untreated chronic infections accelerate SARS-CoV-2 evolution, providing an opportunity for the emergence of genetically divergent variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Infección Persistente , Genoma Viral , Genotipo
18.
Virus Evol ; 8(2): veac080, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36533153

RESUMEN

The first SARS-CoV-2 variant of concern (VOC) to be designated was lineage B.1.1.7, later labelled by the World Health Organization as Alpha. Originating in early autumn but discovered in December 2020, it spread rapidly and caused large waves of infections worldwide. The Alpha variant is notable for being defined by a long ancestral phylogenetic branch with an increased evolutionary rate, along which only two sequences have been sampled. Alpha genomes comprise a well-supported monophyletic clade within which the evolutionary rate is typical of SARS-CoV-2. The Alpha epidemic continued to grow despite the continued restrictions on social mixing across the UK and the imposition of new restrictions, in particular, the English national lockdown in November 2020. While these interventions succeeded in reducing the absolute number of cases, the impact of these non-pharmaceutical interventions was predominantly to drive the decline of the SARS-CoV-2 lineages that preceded Alpha. We investigate the only two sampled sequences that fall on the branch ancestral to Alpha. We find that one is likely to be a true intermediate sequence, providing information about the order of mutational events that led to Alpha. We explore alternate hypotheses that can explain how Alpha acquired a large number of mutations yet remained largely unobserved in a region of high genomic surveillance: an under-sampled geographical location, a non-human animal population, or a chronically infected individual. We conclude that the latter provides the best explanation of the observed behaviour and dynamics of the variant, although the individual need not be immunocompromised, as persistently infected immunocompetent hosts also display a higher within-host rate of evolution. Finally, we compare the ancestral branches and mutation profiles of other VOCs and find that Delta appears to be an outlier both in terms of the genomic locations of its defining mutations and a lack of the rapid evolutionary rate on its ancestral branch. As new variants, such as Omicron, continue to evolve (potentially through similar mechanisms), it remains important to investigate the origins of other variants to identify ways to potentially disrupt their evolution and emergence.

19.
Nature ; 610(7930): 154-160, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35952712

RESUMEN

The SARS-CoV-2 Delta (Pango lineage B.1.617.2) variant of concern spread globally, causing resurgences of COVID-19 worldwide1,2. The emergence of the Delta variant in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 SARS-CoV-2 genomes from England together with 93,649 genomes from the rest of the world to reconstruct the emergence of Delta and quantify its introduction to and regional dissemination across England in the context of changing travel and social restrictions. Using analysis of human movement, contact tracing and virus genomic data, we find that the geographic focus of the expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced more than 1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers reduced onward transmission from importations; however, the transmission chains that later dominated the Delta wave in England were seeded before travel restrictions were introduced. Increasing inter-regional travel within England drove the nationwide dissemination of Delta, with some cities receiving more than 2,000 observable lineage introductions from elsewhere. Subsequently, increased levels of local population mixing-and not the number of importations-were associated with the faster relative spread of Delta. The invasion dynamics of Delta depended on spatial heterogeneity in contact patterns, and our findings will inform optimal spatial interventions to reduce the transmission of current and future variants of concern, such as Omicron (Pango lineage B.1.1.529).


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , COVID-19/virología , Ciudades/epidemiología , Trazado de Contacto , Inglaterra/epidemiología , Genoma Viral/genética , Humanos , Cuarentena/legislación & jurisprudencia , SARS-CoV-2/genética , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/aislamiento & purificación , Viaje/legislación & jurisprudencia
20.
medRxiv ; 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35794895

RESUMEN

The chronic infection hypothesis for novel SARS-CoV-2 variant emergence is increasingly gaining credence following the appearance of Omicron. Here we investigate intrahost evolution and genetic diversity of lineage B.1.517 during a SARS-CoV-2 chronic infection lasting for 471 days (and still ongoing) with consistently recovered infectious virus and high viral loads. During the infection, we found an accelerated virus evolutionary rate translating to 35 nucleotide substitutions per year, approximately two-fold higher than the global SARS-CoV-2 evolutionary rate. This intrahost evolution led to the emergence and persistence of at least three genetically distinct genotypes suggesting the establishment of spatially structured viral populations continually reseeding different genotypes into the nasopharynx. Finally, using unique molecular indexes for accurate intrahost viral sequencing, we tracked the temporal dynamics of genetic diversity to identify advantageous mutations and highlight hallmark changes for chronic infection. Our findings demonstrate that untreated chronic infections accelerate SARS-CoV-2 evolution, ultimately providing opportunity for the emergence of genetically divergent and potentially highly transmissible variants as seen with Delta and Omicron.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA