Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Genes (Basel) ; 14(12)2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38137040

RESUMEN

Glutaric aciduria type 1 (GA-1) is a rare but treatable autosomal-recessive neurometabolic disorder of lysin metabolism caused by biallelic pathogenic variants in glutaryl-CoA dehydrogenase gene (GCDH) that lead to deficiency of GCDH protein. Without treatment, this enzyme defect causes a neurological phenotype characterized by movement disorder and cognitive impairment. Based on a comprehensive literature search, we established a large dataset of GCDH variants using the Leiden Open Variation Database (LOVD) to summarize the known genotypes and the clinical and biochemical phenotypes associated with GA-1. With these data, we developed a GCDH-specific variation classification framework based on American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. We used this framework to reclassify published variants and to describe their geographic distribution, both of which have practical implications for the molecular genetic diagnosis of GA-1. The freely available GCDH-specific LOVD dataset provides a basis for diagnostic laboratories and researchers to further optimize their knowledge and molecular diagnosis of this rare disease.


Asunto(s)
Encefalopatías Metabólicas , Humanos , Encefalopatías Metabólicas/diagnóstico , Glutaril-CoA Deshidrogenasa , Fenotipo , Genotipo
2.
Pneumologie ; 77(11): 862-870, 2023 Nov.
Artículo en Alemán | MEDLINE | ID: mdl-37963476

RESUMEN

The recently published new European guidelines for diagnosis and treatment of pulmonary hypertension now offer the so far most extensive description of genetic testing and counselling for pulmonary arterial hypertension patients. In addition, the importance of a clinical screening of healthy mutation carriers is highlighted as well as the genetic testing of patients with a suspicion of pulmonary veno-occlusive disease. We frame the respective parts of the guidelines on genetic testing and counselling in the context of recent data and provide comments. Finally, we give an outlook on novel molecular approaches starting from Sotatercept, addressing ion channels and novel therapeutic developments.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Enfermedad Veno-Oclusiva Pulmonar , Humanos , Hipertensión Pulmonar Primaria Familiar/diagnóstico , Hipertensión Pulmonar Primaria Familiar/genética , Hipertensión Pulmonar Primaria Familiar/terapia , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/terapia , Enfermedad Veno-Oclusiva Pulmonar/diagnóstico , Enfermedad Veno-Oclusiva Pulmonar/genética , Enfermedad Veno-Oclusiva Pulmonar/terapia
3.
Pulm Circ ; 13(2): e12242, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37292089

RESUMEN

Iron deficiency is common in idiopathic and heritable pulmonary arterial hypertension patients (I/HPAH). A previous report suggested a dysregulation of the iron hormone hepcidin, which is controlled by BMP/SMAD signaling involving the bone morphogenetic protein receptor 2 (BMPR-II). Pathogenic variants in the BMPR2 gene are the most common cause of HPAH. Their effect on patients' hepcidin levels has not been investigated. The aim of this study was to assess whether iron metabolism and regulation of the iron regulatory hormone hepcidin was disturbed in I/HPAH patients with and without a pathogenic variant in the gene BMPR2 compared to healthy controls. In this explorative, cross-sectional study hepcidin serum levels were quantified by enzyme-linked immunosorbent assay. We measured iron status, inflammatory parameters and hepcidin modifying proteins such as IL6, erythropoietin, and BMP2, BMP6 in addition to BMPR-II protein and mRNA levels. Clinical routine parameters were correlated with hepcidin levels. In total 109 I/HPAH patients and controls, separated into three groups, 23 BMPR2 variant-carriers, 56 BMPR2 noncarriers and 30 healthy controls were enrolled. Of these, 84% had iron deficiency requiring iron supplementation. Hepcidin levels were not different between groups and corresponded to the degree of iron deficiency. The levels of IL6, erythropoietin, BMP2, or BMP6 showed no correlation with hepcidin expression. Hence, iron homeostasis and hepcidin regulation was largely independent from these parameters. I/HPAH patients had a physiologically normal iron regulation and no false elevation of hepcidin levels. Iron deficiency was prevalent albeit independent of pathogenic variants in the BMPR2 gene.

4.
J Med Genet ; 60(6): 587-596, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36379543

RESUMEN

BACKGROUND: SHROOM4 is thought to play an important role in cytoskeletal modification and development of the early nervous system. Previously, single-nucleotide variants (SNVs) or copy number variations (CNVs) in SHROOM4 have been associated with the neurodevelopmental disorder Stocco dos Santos syndrome, but not with congenital anomalies of the urinary tract and the visceral or the cardiovascular system. METHODS: Here, exome sequencing and CNV analyses besides expression studies in zebrafish and mouse and knockdown (KD) experiments using a splice blocking morpholino in zebrafish were performed to study the role of SHROOM4 during embryonic development. RESULTS: In this study, we identified putative disease-causing SNVs and CNVs in SHROOM4 in six individuals from four families with congenital anomalies of the urinary tract and the anorectal, cardiovascular and central nervous systems (CNS). Embryonic mouse and zebrafish expression studies showed Shroom4 expression in the upper and lower urinary tract, the developing cloaca, the heart and the cerebral CNS. KD studies in zebrafish larvae revealed pronephric cysts, anomalies of the cloaca and the heart, decreased eye-to-head ratio and higher mortality compared with controls. These phenotypes could be rescued by co-injection of human wild-type SHROOM4 mRNA and morpholino. CONCLUSION: The identified SNVs and CNVs in affected individuals with congenital anomalies of the urinary tract, the anorectal, the cardiovascular and the central nervous systems, and subsequent embryonic mouse and zebrafish studies suggest SHROOM4 as a developmental gene for different organ systems.


Asunto(s)
Sistema Cardiovascular , Sistema Urinario , Embarazo , Femenino , Humanos , Animales , Ratones , Pez Cebra/genética , Variaciones en el Número de Copia de ADN , Morfolinos , Sistema Urinario/anomalías , Sistema Nervioso Central
5.
Genes (Basel) ; 13(5)2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35627145

RESUMEN

Pulmonary arterial hypertension (PAH) can be caused by pathogenic variants in the gene bone morphogenetic protein receptor 2 (BMPR2). While BMPR2 protein expression levels are known to be reduced in the lung tissue of heritable PAH (HPAH) patients, a systematic study evaluating expression in more easily accessible blood samples and its clinical relevance is lacking. Thus, we analyzed the BMPR2 mRNA expression in idiopathic/HPAH patients and healthy controls in blood by quantitative polymerase chain reaction and protein expression by enzyme-linked immunosorbent assay. Clinical parameters included right heart catherization, echocardiography, six-minute walking test and laboratory tests. BMPR2 variant-carriers (n = 23) showed significantly lower BMPR2 mRNA expression in comparison to non-carriers (n = 56) and healthy controls (n = 30; p < 0.0001). No difference in BMPR2 protein expression was detected. Lower BMPR2 mRNA expression correlated significantly with greater systolic pulmonary artery pressure and pulmonary vascular resistance. Higher BMPR2 mRNA expression correlated with greater glomerular filtration rate, cardiac index and six-minute walking distance. We demonstrated the feasibility to assess BMPR2 expression in blood and, for the first time, that BMPR2 mRNA expression levels are significantly reduced in variant carriers and correlated with clinical parameters. Further studies may evaluate the usefulness of BMPR2 mRNA expression in blood as a new marker for disease severity.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Hipertensión Pulmonar Primaria Familiar/genética , Humanos , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/genética , Hipertensión Arterial Pulmonar/genética , ARN Mensajero/genética , Índice de Severidad de la Enfermedad
6.
Amyloid ; 29(4): 245-254, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35533055

RESUMEN

Lysozyme-derived (ALys) amyloidosis is a rare type of hereditary amyloidosis. Nine amyloidogenic variants and ∼30 affected families have been described worldwide. The most common manifestations are renal dysfunction, gastrointestinal tract symptoms, and sicca syndrome. We report on the clinical course of ten patients from six families representing one of the largest cohorts published so far. Seven patients carried the W64R variant showing the whole spectrum of ALys-associated symptoms. Two patients-a mother-son pair-carried a novel lysozyme variant, which was associated with nephropathy and peripheral polyneuropathy. In accordance with previous findings, the phenotype resembled within these families but did not correlate with the genotype. To gain insights into the effect of the variants at the molecular level, we analysed the structure of lysozyme and performed comparative computational predictions on aggregation propensity and conformational stability. Our study supports that decreased conformational stability is a key factor for lysozyme variants to be prone to aggregation. In summary, ALys amyloidosis is a very rare, but still heterogeneous disease that can manifest at an early age. Our newly identified lysozyme variant is associated with nephropathy and peripheral polyneuropathy. Further research is needed to understand its pathogenesis and to enable the development of new treatments.


Asunto(s)
Amiloidosis Familiar , Amiloidosis , Enfermedades Gastrointestinales , Enfermedades Renales , Polineuropatías , Humanos , Muramidasa/genética , Amiloidosis/genética , Amiloidosis/patología , Amiloidosis Familiar/genética , Amiloidosis Familiar/patología , Enfermedades Renales/patología
7.
Reprod Biol Endocrinol ; 20(1): 44, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35248053

RESUMEN

BACKGROUND: The protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway regulates early follicular activation and follicular pool maintenance in female germline cells. Fragile X mental retardation 1 (FMR1) regulates folliculogenesis and it is variably expressed in patients with Premature Ovary Insufficiency. FMR1 expression is supposed to be linked to AKT/mTOR signaling in an ovarian response dependent manner as demonstrated in recent in vitro and in vivo studies in the female germline in vitro and in vivo. METHODS: We evaluated changes in the expression of AKT/mTOR signaling pathway genes by real time PCR in the peripheral blood of 74 patients with Premature Ovarian Insufficiency and 56 fertile controls and correlated their expression with FMR1 expression. RESULTS: Expression of the genes AKT1, TSC2, mTOR, and S6K was significantly more abundant in patients with POI than in the controls. For AKT1, TSC2 and mTOR, gene expression was not affected by FMR1-CGG repeat number in the 5´-untranslated region. FMR1 and S6K expression levels, however, were significantly upregulated in patients with POI and an FMR1 premutation. Independent of a premutation, expression of mTOR, S6K, and TSC2 was significantly correlated with that of FMR1 in all patients. Furthermore, when grouped according to ovarian reserve, this effect remained significant only for mTOR and S6K, with higher significance note in patients with Premature Ovarian Insufficiency than in the controls. CONCLUSIONS: In Premature ovarian insufficiency patients, activation of AKT/mTOR signaling pathway is remarkable and putatively pathognomonic. Additionally, it seems to be triggered by an FMR1/mTOR/S6K linkage mechanism, most relevant in premutation carriers.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Insuficiencia Ovárica Primaria , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Adulto , Estudios de Casos y Controles , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Regulación de la Expresión Génica , Humanos , Reserva Ovárica/genética , Insuficiencia Ovárica Primaria/sangre , Insuficiencia Ovárica Primaria/genética , Proteínas Proto-Oncogénicas c-akt/sangre , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/sangre , Serina-Treonina Quinasas TOR/genética , Regulación hacia Arriba/fisiología
8.
Genes (Basel) ; 13(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35328005

RESUMEN

Fragile X-associated primary ovarian insufficiency (FXPOI) is characterized by oligo/amenorrhea and hypergonadotropic hypogonadism and is caused by the expansion of the CGG repeat in the 5'UTR of Fragile X Mental Retardation 1 (FMR1). Approximately 20% of women carrying an FMR1 premutation (PM) allele (55-200 CGG repeat) develop FXPOI. Repeat Associated Non-AUG (RAN)-translation dependent on the variable CGG-repeat length is thought to cause FXPOI, due to the production of a polyglycine-containing FMR1 protein, FMRpolyG. Peripheral blood monocyte cells (PBMCs) and granulosa cells (GCs) were collected to detect FMRpolyG and its cell type-specific expression in FMR1 PM carriers by immunofluorescence staining (IF), Western blotting (WB), and flow cytometric analysis (FACS). For the first time, FMRpolyG aggregates were detected as ubiquitin-positive inclusions in PBMCs from PM carriers, whereas only a weak signal without inclusions was detected in the controls. The expression pattern of FMRpolyG in GCs was comparable to that in the lymphocytes. We detected FMRpolyG as a 15- to 25-kDa protein in the PBMCs from two FMR1 PM carriers, with 124 and 81 CGG repeats. Flow cytometric analysis revealed that FMRpolyG was significantly higher in the T cells from PM carriers than in those from non-PM carriers. The detection of FMRpolyG aggregates in the peripheral blood and granulosa cells of PM carriers suggests that it may have a toxic potential and an immunological role in ovarian damage in the development of FXPOI.


Asunto(s)
Síndrome del Cromosoma X Frágil , Discapacidad Intelectual , Ataxia/genética , Ataxia/metabolismo , Estudios de Casos y Controles , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Humanos , Discapacidad Intelectual/genética , Leucocitos Mononucleares/metabolismo , Temblor/genética , Temblor/metabolismo
9.
Respir Res ; 23(1): 74, 2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35346192

RESUMEN

BACKGROUND: A genetic predisposition can lead to the rare disease pulmonary arterial hypertension (PAH). Most mutations have been identified in the gene BMPR2 in heritable PAH. However, as of today 15 further PAH genes have been described. The exact prevalence across these genes particularly in other PAH forms remains uncertain. We present the distribution of mutations across PAH genes identified at the largest German referral centre for genetic diagnostics in PAH over a course of > 3 years. METHODS: Our PAH-specific gene diagnostics panel was used to sequence 325 consecutive PAH patients from March 2017 to October 2020. For the first year the panel contained thirteen PAH genes: ACVRL1, BMPR1B, BMPR2, CAV1, EIF2AK4, ENG, GDF2, KCNA5, KCNK3, KLF2, SMAD4, SMAD9 and TBX4. These were extended by the three genes ATP13A3, AQP1 and SOX17 from March 2018 onwards following the genes' discovery. RESULTS: A total of 79 mutations were identified in 74 patients (23%). Of the variants 51 (65%) were located in the gene BMPR2 while the other 28 variants were found in ten further PAH genes. We identified disease-causing variants in the genes AQP1, KCNK3 and SOX17 in families with at least two PAH patients. Mutations were not only detected in patients with heritable and idiopathic but also with associated PAH. CONCLUSIONS: Genetic defects were identified in 23% of the patients in a total of 11 PAH genes. This illustrates the benefit of the specific gene panel containing all known PAH genes.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Receptores de Activinas Tipo II/genética , Adenosina Trifosfatasas/genética , Hipertensión Pulmonar Primaria Familiar/diagnóstico , Hipertensión Pulmonar Primaria Familiar/epidemiología , Hipertensión Pulmonar Primaria Familiar/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Proteínas de Transporte de Membrana/genética , Mutación/genética , Proteínas Serina-Treonina Quinasas , Hipertensión Arterial Pulmonar/diagnóstico , Hipertensión Arterial Pulmonar/genética
10.
Front Endocrinol (Lausanne) ; 12: 660731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194391

RESUMEN

Human growth is a complex trait. A considerable number of gene defects have been shown to cause short stature, but there are only few examples of genetic causes of non-syndromic tall stature. Besides rare variants with large effects and common risk alleles with small effect size, oligogenic effects may contribute to this phenotype. Exome sequencing was carried out in a tall male (height 3.5 SDS) and his parents. Filtered damaging variants with high CADD scores were validated by Sanger sequencing in the trio and three other affected and one unaffected family members. Network analysis was carried out to assess links between the candidate genes, and the transcriptome of murine growth plate was analyzed by microarray as well as RNA Seq. Heterozygous gene variants in CEP104, CROCC, NEK1, TOM1L2, and TSTD2 predicted as damaging were found to be shared between the four tall family members. Three of the five genes (CEP104, CROCC, and NEK1) belong to the ciliary gene family. All genes are expressed in mouse growth plate. Pathway and network analyses indicated close functional connections. Together, these data expand the spectrum of genes with a role in linear growth and tall stature phenotypes.


Asunto(s)
Estatura/genética , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/genética , Trastornos del Crecimiento/genética , Quinasa 1 Relacionada con NIMA/genética , Tiosulfato Azufretransferasa/genética , Adolescente , Animales , Niño , Preescolar , Exoma , Femenino , Expresión Génica , Placa de Crecimiento/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Países Bajos , Linaje
11.
Am J Med Genet A ; 185(4): 1261-1265, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33577136

RESUMEN

Haploinsufficiency of AUTS2 has been associated with neurodevelopmental disorders and dysmorphic features (MIM # 615834). More than 50 patients have been described, mostly carrying de novo deletions of one or more exons, including eight patients with exon 6 deletions. We report on two siblings, a girl and a boy aged 11 and 13 years, in whom the same pathogenic 85 kb deletion on 7q11.22 encompassing exon 6 of AUTS2 by SNP array analysis was identified. Both children had typical symptoms of AUTS2 syndrome such as intellectual impairment and behavioral problems, but with markedly different expression. SNP array analysis excluded the deletion in blood samples of both parents and a healthy brother. Conventional karyotyping of both parents and additional FISH analyses, marking the flanking regions of the deletion, did not show any structural rearrangements involving 7q11.22. A germ cell mosaicism was suggested as the most probable explanation for occurrence of the same deletion in these two siblings. To our knowledge this is the first report of germ cell mosaicism for AUTS2 syndrome. It additionally provides further evidence of intrafamilial phenotypic variability in AUTS2 syndrome and adds clinical information to the phenotypic spectrum of patients with AUTS2 exon 6 deletions.


Asunto(s)
Anomalías Múltiples/genética , Proteínas del Citoesqueleto/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Factores de Transcripción/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/patología , Adolescente , Niño , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/patología , Exones/genética , Femenino , Células Germinativas/metabolismo , Células Germinativas/patología , Haploinsuficiencia/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología , Masculino , Mosaicismo , Eliminación de Secuencia/genética
12.
J Inherit Metab Dis ; 44(1): 99-109, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32845020

RESUMEN

The natural history of most rare diseases is incompletely understood and usually relies on studies with low level of evidence. Consistent with the goals for future research of rare disease research set by the International Rare Diseases Research Consortium in 2017, the purpose of this paper is to review the recently developed method of quantitative retrospective natural history modeling (QUARNAM) and to illustrate its usefulness through didactically selected analyses examples in an overall population of 849 patients worldwide with seven (ultra-) rare neurogenetic disorders. A quantitative understanding of the natural history of the disease is fundamental for the development of specific interventions and counseling afflicted families. QUARNAM has a similar relationship to a published case study as a meta-analysis has to an individual published study. QUARNAM relies on sophisticated statistical analyses of published case reports focusing on four research questions: How long does it take to make the diagnosis? How long do patients live? Which factors predict disease severity (eg, genotypes, signs/symptoms, biomarkers)? Where can patients be recruited for studies? Useful statistical techniques include Kaplan-Meier estimates, cluster analysis, regression techniques, binary decisions trees, word clouds, and geographic mapping. In comparison to other natural history study methods (prospective studies or retrospective studies such as chart reviews), QUARNAM can provide fast information on hard clinical endpoints (ie, survival, diagnostic delay) with a lower effort. The choice of method for a particular drug development program may be driven by the research question and may encompass combinatory approaches.


Asunto(s)
Inteligencia Artificial , Desarrollo de Medicamentos , Producción de Medicamentos sin Interés Comercial , Humanos , Estudios Prospectivos , Enfermedades Raras/tratamiento farmacológico , Estudios Retrospectivos
13.
Amyloid ; 28(2): 91-99, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33283548

RESUMEN

BACKGROUND: Hereditary transthyretin amyloidosis is caused by pathogenic variants in the TTR gene and typically manifests, alongside cardiac and other organ dysfunctions, with a rapidly progressive sensorimotor and autonomic polyneuropathy (ATTRv-PN) leading to severe disability. While most prospective studies have focussed on endemic ATTRv-PN, real-world data on non-endemic, mostly late-onset ATTRv-PN are limited. METHODS: This retrospective study investigated ATTRv-PN patients treated at the Amyloidosis Centre of Heidelberg University Hospital between November 1999 and July 2020. Clinical symptoms, survival, prognostic factors and efficacy of treatment with tafamidis were analysed. Neurologic outcome was assessed using the Coutinho ATTRv-PN stages, and the Peripheral Neuropathy Disability (PND) score. RESULTS: Of 346 subjects with genetic TTR variants, 168 patients had symptomatic ATTRv-PN with 32 different TTR variants identified. Of these, 81.6% had the late-onset type of ATTRv-PN. Within a mean follow-up period of 4.1 ± 2.8 years, 40.5% of patients died. Baseline plasma N-terminal prohormone of brain natriuretic peptide (NT-proBNP) ≥900 ng/l (HR 3.259 [1.421-7.476]; p = .005) was the main predictor of mortality in multivariable analysis. 64 patients were treated with tafamidis and presented for regular follow-up examinations. The therapeutic benefit of tafamidis was more pronounced when treatment was started early in ATTRv-PN stage 1 (PND scores II vs. I; HR 2.718 [1.258-5.873]; p = .011). CONCLUSIONS: In non-endemic, mostly late-onset ATTRv-PN, cardiac involvement assessed by NT-proBNP is a strong prognosticator for overall survival. Long-term treatment with tafamidis is safe and efficacious. Neurologic disease severity at the start of treatment is the main predictor for ATTRv-PN progression on tafamidis.


Asunto(s)
Neuropatías Amiloides Familiares , Polineuropatías , Neuropatías Amiloides Familiares/genética , Humanos , Polineuropatías/diagnóstico , Polineuropatías/tratamiento farmacológico , Polineuropatías/genética , Estudios Prospectivos , Derivación y Consulta , Estudios Retrospectivos
14.
Am J Med Genet A ; 185(2): 549-554, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33191647

RESUMEN

Silver-Russell syndrome (SRS) is characterized by pre- and postnatal growth deficiency. It is most often caused by hypomethylation of the paternal imprinting center 1 of chromosome 11p15.5. In contrast, Sotos syndrome is an overgrowth syndrome that results either from pathogenic NSD1 gene variants or copy number variations affecting the NSD1 gene. Here, we report on a 6 month-old boy with severe short stature, relative macrocephaly, severe feeding difficulties with underweight, muscular hypotonia, motor delay, medullary nephrocalcinosis, bilateral sensorineural hearing impairment and facial dysmorphisms. SNP array revealed a 2.1 Mb de novo interstitial deletion of 5q35.2q35.3 encompassing the NSD1 gene. As Sotos syndrome could not satisfactorily explain his symptoms, diagnostic testing for SRS was initiated. It demonstrated hypomethylation of the imprinting center 1 of chromosome 11p15.5 confirming the clinically suspected SRS. We compared the symptoms of our patient with the typical clinical features of individuals with SRS and Sotos syndrome, respectively. To our knowledge, this is the first study reporting the very unusual coincidence of both Sotos syndrome and SRS in the same patient.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , Síndrome de Silver-Russell/genética , Síndrome de Sotos/genética , Deleción Cromosómica , Cromosomas Humanos Par 5/genética , Variaciones en el Número de Copia de ADN/genética , Metilación de ADN/genética , Impresión Genómica/genética , Humanos , Lactante , Recién Nacido , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Síndrome de Silver-Russell/complicaciones , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/patología , Síndrome de Sotos/complicaciones , Síndrome de Sotos/diagnóstico , Síndrome de Sotos/patología
16.
Genes (Basel) ; 11(10)2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036198

RESUMEN

Pathogenic variants have been identified in 85% of heritable pulmonary arterial hypertension (PAH) patients. These variants were mainly located in the bone morphogenetic protein receptor 2 (BMPR2) gene. However, the penetrance of BMPR2 variants was reduced leading to a disease manifestation in only 30% of carriers. In these PAH patients, further modifiers such as additional pathogenic BMPR2 promoter variants could contribute to disease manifestation. Therefore, the aim of this study was to identify BMPR2 promoter variants in PAH patients and to analyze their transcriptional effect on gene expression and disease manifestation. BMPR2 promoter variants were identified in PAH patients and cloned into plasmids. These were transfected into human pulmonary artery smooth muscle cells to determine their respective transcriptional activity. Nine different BMPR2 promoter variants were identified in seven PAH families and three idiopathic PAH patients. Seven of the variants (c.-575A>T, c.-586dupT, c.-910C>T, c.-930_-928dupGGC, c.-933_-928dupGGCGGC, c.-930_-928delGGC and c.-1141C>T) led to a significantly decreased transcriptional activity. This study identified novel BMPR2 promoter variants which may affect BMPR2 gene expression in PAH patients. They could contribute to disease manifestations at least in some families. Further studies are needed to investigate the frequency of BMPR2 promoter variants and their impact on penetrance and disease manifestation.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Mutación , Regiones Promotoras Genéticas , Hipertensión Arterial Pulmonar/patología , Adulto , Femenino , Humanos , Masculino , Penetrancia , Hipertensión Arterial Pulmonar/genética , Estudios Retrospectivos
17.
Nat Metab ; 2(6): 532-546, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32694733

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and death worldwide. Peroxynitrite, formed from nitric oxide, which is derived from inducible nitric oxide synthase, and superoxide, has been implicated in the development of emphysema, but the source of the superoxide was hitherto not characterized. Here, we identify the non-phagocytic NADPH oxidase organizer 1 (NOXO1) as the superoxide source and an essential driver of smoke-induced emphysema and pulmonary hypertension development in mice. NOXO1 is consistently upregulated in two models of lung emphysema, Cybb (also known as NADPH oxidase 2, Nox2)-knockout mice and wild-type mice with tobacco-smoke-induced emphysema, and in human COPD. Noxo1-knockout mice are protected against tobacco-smoke-induced pulmonary hypertension and emphysema. Quantification of superoxide, nitrotyrosine and multiple NOXO1-dependent signalling pathways confirm that peroxynitrite formation from nitric oxide and superoxide is a driver of lung emphysema. Our results suggest that NOXO1 may have potential as a therapeutic target in emphysema.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Enfisema/tratamiento farmacológico , Enfisema/genética , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis/efectos de los fármacos , Enfisema/etiología , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Transducción de Señal/genética , Superóxidos/metabolismo , Contaminación por Humo de Tabaco/efectos adversos , Tirosina/análogos & derivados , Tirosina/metabolismo
19.
Int J Mol Sci ; 21(9)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397294

RESUMEN

Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare disease which is often caused by recurrent emboli. These are also frequently found in patients with myeloproliferative diseases. While myeloproliferative diseases can be caused by gene defects, the genetic predisposition to CTEPH is largely unexplored. Therefore, the objective of this study was to analyse these genes and further genes involved in pulmonary hypertension in CTEPH patients. A systematic screening was conducted for pathogenic variants using a gene panel based on next generation sequencing. CTEPH was diagnosed according to current guidelines. In this study, out of 40 CTEPH patients 4 (10%) carried pathogenic variants. One patient had a nonsense variant (c.2071A>T p.Lys691*) in the BMPR2 gene and three further patients carried the same pathogenic variant (missense variant, c.1849G>T p.Val617Phe) in the Janus kinase 2 (JAK2) gene. The latter led to a myeloproliferative disease in each patient. The prevalence of this JAK2 variant was significantly higher than expected (p < 0.0001). CTEPH patients may have a genetic predisposition more often than previously thought. The predisposition for myeloproliferative diseases could be an additional risk factor for CTEPH development. Thus, clinical screening for myeloproliferative diseases and genetic testing may be considered also for CTEPH patients.


Asunto(s)
Predisposición Genética a la Enfermedad , Hipertensión Pulmonar/genética , Janus Quinasa 2/genética , Trastornos Mieloproliferativos/genética , Embolia Pulmonar/genética , Anciano , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/sangre , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Enfermedad Crónica , Codón sin Sentido , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hipertensión Pulmonar/sangre , Hipertensión Pulmonar/fisiopatología , Janus Quinasa 2/sangre , Masculino , Persona de Mediana Edad , Mutación Missense , Embolia Pulmonar/sangre , Embolia Pulmonar/fisiopatología , Factores de Riesgo
20.
High Alt Med Biol ; 21(1): 28-36, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31976756

RESUMEN

Background: Exaggerated pulmonary arterial hypertension (PAH) is a hallmark of high-altitude pulmonary edema (HAPE). The objective of this study was therefore to investigate genetic predisposition to HAPE by analyzing PAH candidate genes in a HAPE-susceptible (HAPE-S) family and in unrelated HAPE-S mountaineers. Materials and Methods: Eight family members and 64 mountaineers were clinically and genetically assessed using a PAH-specific gene panel for 42 genes by next-generation sequencing. Results: Two otherwise healthy family members, who developed re-entry HAPE at 3640 m during childhood, carried a likely pathogenic missense mutation (c.1198T>G p.Cys400Gly) in the Janus Kinase 2 (JAK2) gene. One of them progressed to a mild form of PAH at the age of 23 years. In two of the 64 HAPE-S mountaineers likely pathogenic variants have been detected, one missense mutation in the Cytochrome P1B1 gene, and a deletion in the Histidine-Rich Glycoprotein (HRG) gene. Conclusions: This is the first study identifying an inherited missense mutation of a gene related to PAH in a family with re-entry HAPE showing a progression to borderline PAH in the index patient. Likely pathogenic variants in 3.1% of HAPE-S mountaineers suggest a genetic predisposition in some individuals that might be linked to PAH signaling pathways.


Asunto(s)
Mal de Altura , Hipertensión Pulmonar , Edema Pulmonar , Adulto , Altitud , Mal de Altura/genética , Niño , Predisposición Genética a la Enfermedad , Humanos , Hipertensión Pulmonar/genética , Edema Pulmonar/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA