Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Gene Expr Patterns ; 22(1): 15-25, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27613600

RESUMEN

Heterotrimeric G protein signaling plays major roles during different cellular events. However, there is a limited understanding of the molecular mechanisms underlying G protein control during embryogenesis. G proteins are highly conserved and can be grouped into four subfamilies according to sequence homology and function. To further studies on G protein function during embryogenesis, the present analysis identified four Gα subunits representative of the different subfamilies and determined their spatiotemporal expression patterns during Xenopus tropicalis embryogenesis. Each of the Gα subunit transcripts was maternally and zygotically expressed, and, as development progressed, dynamic expression patterns were observed. In the early developmental stages, the Gα subunits were expressed in the animal hemisphere and dorsal marginal zone. While expression was observed at the somite boundaries, in vascular structures, in the eye, and in the otic vesicle during the later stages, expression was mainly found in neural tissues, such as the neural tube and, especially, in the cephalic vesicles, neural crest region, and neural crest-derived structures. Together, these results support the pleiotropism and complexity of G protein subfamily functions in different cellular events. The present study constitutes the most comprehensive description to date of the spatiotemporal expression patterns of Gα subunits during vertebrate development.


Asunto(s)
Diferenciación Celular/genética , Desarrollo Embrionario/genética , Proteínas de Unión al GTP Heterotriméricas/biosíntesis , Xenopus/genética , Secuencia de Aminoácidos/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas de Unión al GTP Heterotriméricas/genética , Hibridación in Situ , Cresta Neural/crecimiento & desarrollo , Cresta Neural/metabolismo , Tubo Neural/crecimiento & desarrollo , Tubo Neural/metabolismo , Transducción de Señal , Somitos/crecimiento & desarrollo , Somitos/metabolismo , Xenopus/crecimiento & desarrollo
2.
J Cell Biochem ; 117(8): 1797-805, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26729411

RESUMEN

Proper regulation of gene expression is essential for normal development, cellular growth, and differentiation. Differential expression profiles of mRNA coding for vertebrate Ric-8B during embryo and adult stages have been observed. In addition, Ric-8B is expressed in few cerebral nuclei subareas. These facts point to a dynamic control of RIC8B gene expression. In order to understand the transcriptional regulation of this gene, we searched for cis-elements in the sequence of the human RIC8B promoter region, identifying binding sites for the basic/leucine zipper (bZip) CREB transcription factor family (CRE sites) and C/EBP transcription factor family (C/EBP sites). CRE sites were found clustered near the transcription start site, while the C/EBP sites were found clustered at around 300 bp upstream the CRE sites. Here, we demonstrate the ability of CREB1 and C/EBPß to bind their respective elements identified in the RIC8B promoter. Comparative protein-DNA interaction analyses revealed only the proximal elements as high affinity sites for CREB1 and only the distal elements as high affinity sites for C/EBPß. Chromatin immunoprecipitation analyses, carried out using a human neuroblastoma cell line, confirmed the preferential association of CREB to the proximal region of the RIC8B promoter. By performing luciferase reporter assays, we found the CRE sites as the most relevant elements for its transcriptional activity. Taken together, these data show the existence of functional CREB and C/EBP binding sites in the human RIC8B gene promoter, a particular distribution of these sites and demonstrate a relevant role of CREB in stimulating transcriptional activity of this gene. J. Cell. Biochem. 117: 1797-1805, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/biosíntesis , Elementos de Respuesta , Transcripción Genética/fisiología , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Factores de Intercambio de Guanina Nucleótido/genética , Humanos
3.
Dev Biol ; 378(2): 74-82, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23588098

RESUMEN

The neural crest (NC) is a transient embryonic structure induced at the border of the neural plate. NC cells extensively migrate towards diverse regions of the embryo, where they differentiate into various derivatives, including most of the craniofacial skeleton and the peripheral nervous system. The Ric-8A protein acts as a guanine nucleotide exchange factor for several Gα subunits, and thus behaves as an activator of signaling pathways mediated by heterotrimeric G proteins. Using in vivo transplantation assays, we demonstrate that Ric-8A levels are critical for the migration of cranial NC cells and their subsequent differentiation into craniofacial cartilage during Xenopus development. NC cells explanted from Ric-8A morphant embryos are unable to migrate directionally towards a source of the Sdf1 peptide, a potent chemoattractant for NC cells. Consistently, Ric-8A knock-down showed anomalous radial migratory behavior, displaying a strong reduction in cell spreading and focal adhesion formation. We further show that during in vivo and in vitro neural crest migration, Ric-8A localizes to the cell membrane, in agreement with its role as a G protein activator. We propose that Ric-8A plays essential roles during the migration of cranial NC cells, possibly by regulating cell adhesion and spreading.


Asunto(s)
Movimiento Celular , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Cresta Neural/citología , Proteínas de Xenopus/metabolismo , Animales , Adhesión Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/genética , Hibridación in Situ , Microscopía Confocal , Cresta Neural/embriología , Cresta Neural/metabolismo , Transducción de Señal/genética , Cráneo/embriología , Cráneo/inervación , Imagen de Lapso de Tiempo/métodos , Xenopus/embriología , Proteínas de Xenopus/genética , Xenopus laevis/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA