Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
Front Cell Dev Biol ; 11: 1290876, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38149046

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, continues to spread around the world with serious cases and deaths. It has also been suggested that different genetic variants in the human genome affect both the susceptibility to infection and severity of disease in COVID-19 patients. Angiotensin-converting enzyme 2 (ACE2) has been identified as a cell surface receptor for SARS-CoV and SARS-CoV-2 entry into cells. The construction of an experimental model system using human iPS cells would enable further studies of the association between viral characteristics and genetic variants. Airway and alveolar epithelial cells are cell types of the lung that express high levels of ACE2 and are suitable for in vitro infection experiments. Here, we show that human iPS cell-derived airway and alveolar epithelial cells are highly susceptible to viral infection of SARS-CoV-2. Using gene knockout with CRISPR-Cas9 in human iPS cells we demonstrate that ACE2 plays an essential role in the airway and alveolar epithelial cell entry of SARS-CoV-2 in vitro. Replication of SARS-CoV-2 was strongly suppressed in ACE2 knockout (KO) lung cells. Our model system based on human iPS cell-derived lung cells may be applied to understand the molecular biology regulating viral respiratory infection leading to potential therapeutic developments for COVID-19 and the prevention of future pandemics.

3.
Sci Signal ; 15(729): eabm5011, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35412849

RESUMEN

Toll-like receptor (TLR) stimulation induces glycolysis and the production of mitochondrial reactive oxygen species (ROS), both of which are critical for inflammatory responses in macrophages. Here, we demonstrated that cyclin J, a TLR-inducible member of the cyclin family, reduced cytokine production in macrophages by coordinately controlling glycolysis and mitochondrial functions. Cyclin J interacted with cyclin-dependent kinases (CDKs), which increased the phosphorylation of a subset of CDK substrates, including the transcription factor FoxK1 and the GTPase Drp1. Cyclin J-dependent phosphorylation of FoxK1 decreased the transcription of glycolytic genes and Hif-1α activation, whereas hyperactivation of Drp1 by cyclin J-dependent phosphorylation promoted mitochondrial fragmentation and impaired the production of mitochondrial ROS. In mice, cyclin J in macrophages limited the growth of tumor xenografts and protected against LPS-induced shock but increased the susceptibility to bacterial infection. Collectively, our findings indicate that cyclin J-CDK signaling promotes antitumor immunity and the resolution of inflammation by opposing the metabolic changes that drive inflammatory responses in macrophages.


Asunto(s)
Inmunidad Innata , Macrófagos , Animales , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Humanos , Macrófagos/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
4.
Viruses ; 13(9)2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34578344

RESUMEN

Lassa virus (LASV)-a member of the family Arenaviridae-causes Lassa fever in humans and is endemic in West Africa. Currently, no approved drugs are available. We screened 2480 small compounds for their potential antiviral activity using pseudotyped vesicular stomatitis virus harboring the LASV glycoprotein (VSV-LASVGP) and a related prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV). Follow-up studies confirmed that CP100356 hydrochloride (CP100356), a specific P-glycoprotein (P-gp) inhibitor, suppressed VSV-LASVGP, LCMV, and LASV infection with half maximal inhibitory concentrations of 0.52, 0.54, and 0.062 µM, respectively, without significant cytotoxicity. Although CP100356 did not block receptor binding at the cell surface, it inhibited low-pH-dependent membrane fusion mediated by arenavirus glycoproteins. P-gp downregulation did not cause a significant reduction in either VSV-LASVGP or LCMV infection, suggesting that P-gp itself is unlikely to be involved in arenavirus entry. Finally, our data also indicate that CP100356 inhibits the infection by other mammarenaviruses. Thus, our findings suggest that CP100356 can be considered as an effective virus entry inhibitor for LASV and other highly pathogenic mammarenaviruses.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/efectos de los fármacos , Arenaviridae/metabolismo , Isoquinolinas/farmacología , Virus Lassa/efectos de los fármacos , Quinazolinas/farmacología , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/farmacología , Chlorocebus aethiops , Humanos , Fiebre de Lassa/tratamiento farmacológico , Fiebre de Lassa/virología , Virus de la Coriomeningitis Linfocítica , Receptores Virales , Células Vero , Estomatitis Vesicular/virología , Inhibidores de Proteínas Virales de Fusión/farmacología
5.
iScience ; 24(5): 102428, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33880436

RESUMEN

Genetic differences are a primary reason for differences in the susceptibility and severity of COVID-19. As induced pluripotent stem (iPS) cells maintain the genetic information of the donor, they can be used to model individual differences in SARS-CoV-2 infection in vitro. We found that human iPS cells expressing the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) (ACE2-iPS cells) can be infected w SARS-CoV-2. In infected ACE2-iPS cells, the expression of SARS-CoV-2 nucleocapsid protein, budding of viral particles, and production of progeny virus, double membrane spherules, and double-membrane vesicles were confirmed. We performed SARS-CoV-2 infection experiments on ACE2-iPS/ embryonic stem (ES) cells from eight individuals. Male iPS/ES cells were more capable of producing the virus compared with female iPS/ES cells. These findings suggest that ACE2-iPS cells can not only reproduce individual differences in SARS-CoV-2 infection in vitro but also are a useful resource to clarify the causes of individual differences in COVID-19 due to genetic differences.

6.
J Invest Dermatol ; 140(2): 298-308.e5, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31445004

RESUMEN

Holocrine secretion is a specific mode of secretion involving secretion of entire cytoplasmic materials with remnants of dead cells, as observed in multicellular exocrine glands of reptiles, birds, and mammals. Here, we found that sebaceous glands in mice, representative of multicellular exocrine glands of mammals, exhibit a form of polarized stratified epithelium equipped with tight junctions (TJs), and found that holocrine secretion occurred outside the TJ barriers. Sebaceous glands share characteristics of stratified epithelia with interfollicular epidermis, including basal-layer-restricted cell proliferation, TJ barrier formation at a specific single layer of cells with apico-basolateral plasma membrane polarity, and cell death outside the TJ barrier. Knockout of claudin-1, a transmembrane adhesive protein in TJs, in mice caused leakage of the TJ barrier in sebaceous glands and incomplete degradation of the plasma membrane and nuclei during holocrine secretion. Claudin-1 knockout resulted in the accumulation of incompletely degenerated sebocytes in sebaceous ducts, suggesting that the TJ barrier was necessary for differentiation of holocrine secretion. The redefinition of sebaceous glands as TJ-forming stratified epithelia provides an important framework to understand the molecular mechanism of holocrine secretion.


Asunto(s)
Membrana Celular/metabolismo , Claudina-1/metabolismo , Células Epiteliales/metabolismo , Glándulas Sebáceas/metabolismo , Animales , Diferenciación Celular , Núcleo Celular/metabolismo , Células Cultivadas , Claudina-1/genética , Femenino , Ratones , Ratones Noqueados , Glándulas Sebáceas/citología , Uniones Estrechas/metabolismo
7.
Microscopy (Oxf) ; 63(3): 227-34, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24586041

RESUMEN

Postsynaptic density-95 (PSD-95) accumulates at excitatory postsynapses and plays important roles in the clustering and anchoring of numerous proteins at the PSD. However, a detailed ultrastructural analysis of clusters exclusively consisting of PSD-95 has never been performed. Here, we employed a genetically encoded tag, three tandem repeats of metallothionein (3MT), to study the structure of PSD-95 clusters in cells by electron tomography and cryo-electron microscopy of vitreous sections. We also performed conventional transmission electron microscopy (TEM). Cultured hippocampal neurons expressing a fusion protein of PSD-95 coupled to 3MT (PDS-95-3MT) were incubated with CdCl2 to result in the formation of Cd-bound PSD-95-3MT. Two types of electron-dense deposits composed of Cd-bound PSD-95-3MT were observed in these cells by TEM, as reported previously. Electron tomography revealed the presence of membrane-shaped structures representing PSD-95 clusters at the PSD and an ellipsoidal structure located in the non-synaptic cytoplasm. By TEM, the PSD-95 clusters appeared to be composed of a number of dense cores. In frozen hydrated sections, these dense cores were also found beneath the postsynaptic membrane. Taken together, our findings suggest that dense cores of PSD-95 aggregate to form the larger clusters present in the PSD and the non-synaptic cytoplasm.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Proteínas de la Membrana/ultraestructura , Metalotioneína , Animales , Homólogo 4 de la Proteína Discs Large , Hipocampo/citología , Péptidos y Proteínas de Señalización Intracelular , Metalotioneína/genética , Microtomía , Ratas , Proteínas Recombinantes de Fusión/genética , Secuencias Repetidas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA