Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
IET Nanobiotechnol ; 16(9): 295-304, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36200801

RESUMEN

Human pluripotent stem cells (hPSCs) can be proliferated on completely synthetic materials under xeno-free cultivation conditions using biomaterials grafted with extracellular matrix protein (ECM)-derived peptides. However, cell culture biomaterials grafted with ECM-derived peptides must be prepared using a high concentration of peptide reaction solution (e.g. 1000 µg/ml), whereas the ECM concentration of the ECM-coated surface for hPSC culture is typically 5 µg/ml. We designed a polyethylene glycol (PEG) joint nanosegment (linker) to be used between base cell culture biomaterials and bioactive ECM-derived peptides to enhance the probability of contact between ECM-derived peptides and cell binding receptors of hPSCs. Vitronectin-derived peptides with glycine joint nanosegments (GCGG) were conjugated onto poly (vinyl alcohol-co-itaconic acid) hydrogels via PEG joint nanosegments, and human embryonic stem cells (hESCs) were cultivated on these hydrogels. hESCs could successfully be cultivated on hydrogels while maintaining their pluripotency and differentiation potential to differentiate into cells that are induced from three germ layers in vitro and in vivo, where only a 50 µg/ml ECM-derived peptide concentration was used when the PEG joint nanosegments were introduced into peptides that were grafted onto hydrogel surfaces. The joint nanosegments between bioactive peptides and base cell culture biomaterials were found to contribute to efficient hESC attachment and proliferation.


Asunto(s)
Células Madre Embrionarias Humanas , Hidrogeles , Humanos , Polietilenglicoles , Proteínas de la Matriz Extracelular , Péptidos/farmacología , Alcohol Polivinílico , Materiales Biocompatibles/farmacología , Células Cultivadas
2.
J Mater Chem B ; 10(30): 5723-5732, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35791836

RESUMEN

The transplantation of human mesenchymal stem cells (hMSCs), such as bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs), has shown beneficial effects in protecting transplanted tissues and cells against graft-versus-host disease (GVHD). Human pluripotent stem cell (hPSC)-derived mesenchymal stem cells (MSCs) can also be used to generate hMSCs with stable characteristics without limitations. Therefore, we differentiated human induced pluripotent stem cells (hiPSCs, H-M5) and human embryonic stem cells (hESCs, H9) into hMSCs on dishes coated with different extracellular matrix (ECM) proteins to study the effect of cell culture biomaterials on hPSC differentiation into hMSCs. hPSC-derived MSCs cultured on Matrigel (MAT)-coated, collagen (COL)-coated and laminin-521 (LN-521)-coated tissue culture polystyrene (TCP) dishes showed excellent proliferation speed and reduced aging over 10 passages. High MSC surface marker (CD44, CD73, CD90 and CD105) expression was also observed on hPSC-derived MSCs cultured on MAT-coated, COL-coated and LN-521-coated TCP dishes as well as uncoated TCP dishes. Analysis of late osteogenic differentiation by evaluation of mineral deposition revealed that hPSC-derived MSCs cultured on fibronectin (FN)-coated and LN-521-coated TCP dishes showed high osteogenic differentiation. ECM proteins are effective as coating materials on cell culture biomaterials to regulate the proliferation and differentiation fate of hPSC-derived MSCs.


Asunto(s)
Diferenciación Celular , Proteínas de la Matriz Extracelular , Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , Materiales Biocompatibles/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Osteogénesis
3.
Biomed Pharmacother ; 146: 112492, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34906768

RESUMEN

The emergence of clinical complications and therapeutic challenges for treating various diseases necessitate the discovery of novel restorative functional materials. Polymer-based drug delivery systems have been extensively reported in the last two decades. Recently, there has been an increasing interest in the progression of natural biopolymers based controlled therapeutic strategies, especially in drug delivery and tissue engineering applications. However, the solubility and functionalisation due to their complex network structure and intramolecular bonding seem challenging. This review explores the current advancement and prospects of the most promising natural polymers such as cellulose, starch and their derivatives-based drug delivery vehicles like hydrogels, films and composites, in combating major ailments such as bone infections, microbial infections, and cancers. In addition, selective drug targeting using metal-drug (MD) and MD-based polymeric missiles have been exciting but challenging for its application in cancer therapeutics. Owing to high biocompatibility of starch and cellulose, these materials have been extensively evaluated in biomedical and pharmaceutical applications. This review presents a detailed impression of the current trends for the construction of biopolymer-based tissue engineering, drug/gene/protein delivery vehicles.


Asunto(s)
Celulosa , Almidón , Animales , Antiinfecciosos , Sistemas de Liberación de Medicamentos , Embalaje de Alimentos , Técnicas de Transferencia de Gen , Humanos , Ingeniería de Tejidos
4.
Molecules ; 26(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885744

RESUMEN

A worldwide increase in the incidence of fungal infections, emergence of new fungal strains, and antifungal resistance to commercially available antibiotics indicate the need to investigate new treatment options for fungal diseases. Therefore, the interest in exploring the antifungal activity of medicinal plants has now been increased to discover phyto-therapeutics in replacement to conventional antifungal drugs. The study was conducted to explore and identify the mechanism of action of antifungal agents of edible plants, including Cinnamomum zeylanicum, Cinnamomum tamala, Amomum subulatum, Trigonella foenumgraecum, Mentha piperita, Coriandrum sativum, Lactuca sativa, and Brassica oleraceae var. italica. The antifungal potential was assessed via the disc diffusion method and, subsequently, the extracts were assessed for phytochemicals and total antioxidant activity. Potent polyphenols were detected using high-performance liquid chromatography (HPLC) and antifungal mechanism of action was evaluated in silico. Cinnamomum zeylanicum exhibited antifungal activity against all the tested strains while all plant extracts showed antifungal activity against Fusarium solani. Rutin, kaempferol, and quercetin were identified as common polyphenols. In silico studies showed that rutin displayed the greatest affinity with binding pocket of fungal 14-alpha demethylase and nucleoside diphosphokinase with the binding affinity (Kd, -9.4 and -8.9, respectively), as compared to terbinafine. Results indicated that Cinnamomum zeylanicum and Cinnamomum tamala exert their antifungal effect possibly due to kaempferol and rutin, respectively, or possibly by inhibition of nucleoside diphosphokinase (NDK) and 14-alpha demethylase (CYP51), while Amomum subulatum and Trigonella foenum graecum might exhibit antifungal potential due to quercetin. Overall, the study demonstrates that plant-derived products have a high potential to control fungal infections.


Asunto(s)
Antifúngicos/química , Productos Biológicos/química , Micosis/tratamiento farmacológico , Polifenoles/química , Amomum/química , Antifúngicos/farmacología , Antioxidantes/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Brassica/química , Cinnamomum zeylanicum/química , Coriandrum/química , Lactuca/química , Mentha piperita/química , Micosis/microbiología , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Comestibles/química , Plantas Medicinales/química , Polifenoles/aislamiento & purificación , Polifenoles/farmacología , Quercetina/química , Quercetina/aislamiento & purificación , Quercetina/farmacología , Trigonella/química
5.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34830442

RESUMEN

Herein, we report the green synthesis of silver nanoparticles (OE-Ag NPs) by ecofriendly green processes using biological molecules of Olea europaea leaf extract. Green synthesized OE-Ag NPs were successfully characterized using different spectroscopic techniques. Antibacterial activity of OE-Ag NPs was assessed against four different bacteriological strains using the dilution serial method. The cytotoxic potential was determined against MCF-7 carcinoma cells using MTT assay in terms of cell viability percentage. Antioxidant properties were evaluated in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. Biocompatibility was further examined by incubating the synthesized NPs with hMSC cells for 24 h. The results were demonstrated that synthesized OE-Ag NPs presented excellent log10 reduction in the growth of all the tested bacterial strains, which as statistically equivalent (p > 0.05) to the standard antibiotic drug. Moreover, they also demonstrated excellent cytotoxic efficacy against the MCF-7 carcinoma cells compared to plant lead extract and Com-Ag NPs. Green synthesized OE-Ag NPs appeared more biocompatible to hMSC and 293T cells compared to Com-Ag NPs. Excellent biological results of the OE-Ag NPs might be attributed to the synergetic effect of NPs' properties and the adsorbed secondary metabolites of plant leaf extract. Hence, this study suggests that synthesized OE-Ag NPs can be a potential contender for their various biological and nutraceutical applications. Moreover, this study will open a new avenue to produce biocompatible nanoparticles with additional biological functionalities from the plants.


Asunto(s)
Tecnología Química Verde , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Olea/química , Extractos Vegetales/química , Plata/química
6.
J Enzyme Inhib Med Chem ; 36(1): 1751-1759, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34325595

RESUMEN

Molecular hybridisation of four bioactive fragments piperazine, substituted-benzofuran, amino acids, and 2,4-dinitrobenzenesulfonamide as single molecular architecture was designed. A series of new hybrids were synthesised and subjected to evaluation for their inhibitory activity against Mycobacterium tuberculosis (Mtb) H37Rv. 4d-f and 4o found to exhibit MIC as 1.56 µg/mL, equally active as ethambutol whereas 4a, 4c, 4j displayed MIC 0.78 µg/mL were superior to ethambutol. Tested compounds demonstrated an excellent safety profile with very low toxicity, good selectivity index, and antioxidant properties. All the newly synthesised compounds were thoroughly characterised by analytical methods. The result was further supported by molecular modelling studies on the crystal structure of Mycobacterium tuberculosis enoyl reductase.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Bencenosulfonatos/química , Benzofuranos/química , Diseño de Fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Piperazina/química , Amidas/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Análisis Espectral/métodos
7.
Acta Biomater ; 116: 162-173, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32911107

RESUMEN

Thermoresponsive surfaces enable the detachment of cells or cell sheets by decreasing the temperature of the surface when harvesting the cells. However, human pluripotent stem cells (hPSCs), such as embryonic stem cells and induced pluripotent stem cells, cannot be directly cultured on a thermoresponsive surface; hPSCs need a specific extracellular matrix to bind to the integrin receptors on their surfaces. We prepared a thermoresponsive surface by using poly(N-isopropylacrylamide-co-butylacrylate) and recombinant vitronectin to provide an optimal coating concentration for the hPSC culture. hPSCs can be cultured on the same thermoresponsive surface for 5 passages by partial detachment of the cells from the surface by decreasing the temperature for 30 min; then, the remaining hPSCs were subsequently cultured on the same dishes following the addition of new cultivation media. The detached cells, even after continual culture for five passages, showed high pluripotency, the ability to differentiate into cells derived from the 3 germ layers and the ability to undergo cardiac differentiation.


Asunto(s)
Células Madre Pluripotentes , Diferenciación Celular , Proliferación Celular , Células Madre Embrionarias , Humanos , Vitronectina
8.
Microb Pathog ; 141: 103960, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31953224

RESUMEN

BACKGROUND: Mycoplasma pneumoniae (MP) is a common cause of community-acquired pneumonia (CAP) among the children and adults that results upper and lower respiratory tract infections. OBJECTIVE: This study was aimed to inspect the ameliorative action of A. chinensis synthesized ZnONPs against M. pneumoniae infected pneumonia mice model. MATERIALS AND METHODS: ZnO NPs was synthesized from Albizia chinensis bark extract and characterized by UV-Vis spectroscopy, Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), energy dispersive X-ray (EDX) and atomic force microscope (AFM) analyses. The antibacterial effectual of synthesized ZnONPs were examined against clinical pathogens. The pneumonia was induced to BALB/c mice via injecting the M. pneumoniae and treated with synthesized ZnONPs, followed by the total protein content, total cell counts and inflammatory mediators level was assessed in the BALF of experimental animals. The Histopathological investigation was done in the lung tissues of test animals. RESULTS: The outcomes of this work revealed that the formulated ZnONPs was quasi-spherical, radial and cylindrical; the size was identified as 116.5 ± 27.45 nm in diameter. The in vitro antimicrobial potential of formulated ZnO-NPs displayed noticeable inhibitory capacity against the tested fungal and bacterial strains. The administration of synthesized ZnO-NPs in MP infected mice model has significantly reduced the levels of total protein, inflammatory cells, inflammatory cytokines such as IL-1, IL-6, IL-8, tumour necrosis factor-alpha (TNF-a) and transforming growth factor (TGF). Besides, the histopathological examination of MP infected mice lung tissue showed the cellular arrangements were effectively retained after administration of synthesized ZnO-NPs. CONCLUSION: In conclusion, synthesized ZnO-NPs alleviate pneumonia progression via reducing the level of inflammatory cytokines and inflammatory cells in MP infected mice model.


Asunto(s)
Albizzia/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Nanopartículas del Metal/química , Mycoplasma pneumoniae/efectos de los fármacos , Extractos Vegetales/química , Óxido de Zinc/química , Animales , Antibacterianos/química , Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Citocinas/metabolismo , Hongos/efectos de los fármacos , Mediadores de Inflamación , Nanopartículas del Metal/uso terapéutico , Ratones , Pruebas de Sensibilidad Microbiana , Neumonía por Mycoplasma/microbiología , Neumonía por Mycoplasma/patología , Análisis Espectral
9.
APMIS ; 126(3): 215-226, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29484747

RESUMEN

Customary consumption of unpasteurized milk by the population in the central Najed region of Saudi Arabia may pose a health risk. Therefore, 80 camel milk samples were collected aseptically from seven different stations of Riyadh region. The biochemical and microbiological properties of these milk samples were determined. Nutrient agar and brain heart infusion agar were used to determine mesophilic aerobic counts (MACs). The MAC in each mL of milk varied from 60 to 16 × 104  CFU/mL on nutrient agar. Based on the colony morphology, 176 colonies were collected from different samples, and these isolates were de-replicated into 80 unique isolates using rep-PCR analysis. Surprisingly, the 16S rRNA sequence analysis of these strains revealed that more than one-third of the collected milk samples contained strains that share maximum sequence similarities with well-known pathogens, such as Brucella, Bacillus anthracis, Listeria monocytogenes, and MRSA. Furthermore, many strains exhibit 16S rRNA gene similarity with opportunistic pathogens such as Citrobacter freundii and Kytococcus schroeteri. Many strains exhibit ß-hemolytic activity and resistant to six different antibiotics. Our study suggested that consumption of raw camel milk from this region constitutes a great health risk.


Asunto(s)
Bacterias/aislamiento & purificación , Leche/química , Leche/microbiología , Animales , Bacillus anthracis/genética , Bacillus anthracis/aislamiento & purificación , Bacterias/genética , Carga Bacteriana , Brucella/genética , Brucella/aislamiento & purificación , Camelus , Citrobacter freundii/genética , Citrobacter freundii/aislamiento & purificación , Microbiología de Alimentos , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Micrococcaceae/genética , Micrococcaceae/aislamiento & purificación , Pasteurización , ARN Ribosómico 16S/genética , Arabia Saudita
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA