Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Eur J Appl Physiol ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904773

RESUMEN

PURPOSE: Most athletes experience short-term training cessation because of illness, injury, post-season vacation, or other reasons. Passive muscle stiffness is a potential risk factor for a sprint-type hamstring strain injury, but limited information is available about the effect of short-term training cessation on passive muscle stiffness. The present study aimed to identify whether and how passive muscle stiffness of the biceps femoris long head (BFlh) would vary due to 2 weeks of training cessation in sprinters. METHODS: Passive BFlh shear-wave speed (a proxy for stiffness) was measured using ultrasound shear-wave elastography in 28 male sprinters, before and after 2 weeks of intervention. During the 2 weeks, the participants in the training-cessation group (n = 14) were allowed to maintain their normal daily activities but not to perform any physical training, including stretching and resistance exercises. The participants in the training continuation group (n = 14) performed the training (including maximum speed sprint, plyometric, and weight training) prescribed by their coaches 5 days per week. RESULTS: In the training-cessation group, passive BFlh shear-wave speed increased after the 2 weeks of training cessation (4.75 ± 0.77 to 5.00 ± 0.88 m/s, P < 0.001). In contrast, there was no significant difference before and after the 2 weeks of training continuation (4.90 ± 0.85 to 4.93 ± 0.85 m/s, P = 0.521). CONCLUSIONS: The present findings indicate that muscles stiffen by training cessation in sprinting athletes.

2.
Exp Gerontol ; 190: 112430, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608793

RESUMEN

PURPOSE: We investigated the effect of an unsupervised, body mass- home-based resistance training program in older adults performed at either a fast or slow contractile speed on changes to muscle-power, -volume, -architecture, and fatigue resistance of the knee extensors. METHODS: Thirty-two male older adults (age 65-88 years) were separated into 1) fast-speed exercise (Fast-group), 2) slow-speed exercise (Slow-group), and 3) no exercise (Control-group) groups. Participants in the exercise groups performed 30-45 repetitions of knee-extension and sit-to-stand exercises 3 times a week for 8 weeks with different exercise speed between the groups. Before and after the intervention period, the following variables were measured: Isotonic power, isometric strength, twitch contractile properties, muscle-activity, -architecture, and -quality, neuromuscular fatigue resistance of the knee extensors, and thigh muscle volume. RESULTS: Peak power was increased in both the Fast-group (+24 %, P < 0.01, d = 0.65) and Slow-group (+12 %, P < 0.05, d = 0.33) but not in the Control-group. Training increased pennation angle of the vastus lateralis in both the Fast-group (+8 %, P < 0.01, d = 0.42) and Slow-group (+8 %, P < 0.01, d = 0.42), while only the Fast-group showed increase in pennation angle of the rectus femoris (+12 %, P < 0.01, d = 0.64) and thigh muscle volume (+16 %, P < 0.01, d = 0.52). There was no time × group interaction effect for the other neuromuscular measures. CONCLUSIONS: Unsupervised, body mass- and home-based resistance training performed at either fast or slow speeds can improve muscle power in older adults, while fast-speed exercise may be preferable over slow-speed owing to the relatively greater improvement of muscle-power, -volume, -architecture, and better time efficiency.


Asunto(s)
Fuerza Muscular , Entrenamiento de Fuerza , Humanos , Entrenamiento de Fuerza/métodos , Anciano , Masculino , Fuerza Muscular/fisiología , Anciano de 80 o más Años , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Contracción Isométrica/fisiología , Rodilla/fisiología , Contracción Muscular/fisiología
3.
Eur J Appl Physiol ; 124(3): 793-803, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37702788

RESUMEN

PURPOSE: Non-muscular tissue stiffness is assumed to have a negative impact on joint flexibility, and a reduction in non-muscular tissue stiffness may be important, especially in older adults. The present study aimed to compare the acute effects of static stretching on non-muscular tissue stiffness between older and young adults and to investigate whether a decrease in tissue stiffness improves joint flexibility. METHODS: Twenty older (62-83 years) and 20 young (21-24 years) males participated. Ankle dorsiflexion static stretching (five sets of 90 s each) was performed, and before and after stretching, the ankle dorsiflexion range of motion (RoM), passive ankle joint stiffness, and shear wave speed (SWS) (an index of stiffness) of the sciatic nerve, tibial nerve, and posterior thigh fascia were measured. RESULTS: Stretching led to an increase in RoM and a decrease in passive joint stiffness in both groups (P < 0.001) with no significant between-group differences (P ≥ 0.055). The between-group difference in the effect of stretching on SWS was evident only for the sciatic nerve, and a decline in sciatic nerve SWS was only observed in the older adult group (pre-stretching: 2.5 ± 0.3 m/s; post-stretching: 2.3 ± 0.4 m/s; P = 0.027). A significant positive repeated-measures correlation was observed between the sciatic nerve SWS and passive joint stiffness (P = 0.014, rrm = 0.540). CONCLUSION: The reduction in sciatic nerve stiffness by stretching was noticeable in older men and led to improved joint flexibility. These findings may provide insight into tissue adaptation by stretching and may be used to explore effective exercises for improving joint flexibility in older adults.


Asunto(s)
Ejercicios de Estiramiento Muscular , Masculino , Adulto Joven , Humanos , Anciano , Músculo Esquelético/fisiología , Fascia , Muslo , Rango del Movimiento Articular/fisiología , Articulación del Tobillo/fisiología , Torque
4.
Front Physiol ; 14: 1292778, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074320

RESUMEN

Introduction: Bioelectrical impedance analysis (BIA) can noninvasively and quickly assess electrical properties of the body, such as the phase angle. Phase angle is regarded as the quantity and/or quality of skeletal muscle and is associated with exercise performance, such as jump height and walking speed. Although the phase angle derived from BIA is assumed to be a useful way to assess muscle function, the relationship between the phase angle and neuromuscular properties has not been fully investigated. The purpose of this study was to investigate the association of phase angle with voluntary and evoked contractile properties in 60 adults (age, 21-83 years; 30 females and 30 males). Methods: The phase angle of the right leg at 50 kHz was evaluated using BIA. The twitch contractile properties (peak twitch torque [PTtwitch], rate of twitch torque development [RTDtwitch], and time-to-PTtwitch [TPTtwitch]) of the plantar flexors were measured using tibial nerve electrical stimulation. Maximal voluntary isometric contractions (MVICs) were performed to measure the maximal muscle strength and explosive muscle strength, from which the peak MVIC torque (PTMVIC) and rate of torque development (RTD) over a time interval of 0-200 ms were assessed, respectively. The root mean square (RMS) values of electromyographic (EMG) activity during the PTMVIC and RTD measurements (EMG-RMSMVIC and EMG-RMSRTD, respectively) were calculated. The RTD and EMG-RMSRTD were normalized using PTMVIC and EMG-RMSMVIC, respectively. Results and discussion: Phase angle significantly correlated with twitch contractile properties (|r| ≥ 0.444, p < 0.001), PTMVIC (r = 0.532, p < 0.001), and RTD (r = 0.514, p < 0.001), but not with normalized RTD (r = 0.242, p = 0.065) or normalized EMG-RMSRTD (r = -0.055, p = 0.676). When comparing measurement variables between the low- and high-phase angle groups while controlling for sex and age effects, the high-phase angle group showed greater PTtwitch, RTDtwitch, PTMVIC, and RTD (p < 0.001) and shorter TPTtwitch (p < 0.001) but not normalized RTD (p = 0.184) or normalized EMG-RMSRTD (p = 0.317). These results suggest that the leg phase angle can be an indicator of voluntary and evoked muscle contractile properties but not the neuromuscular activity of the plantar flexors, irrespective of sex and age.

5.
PLoS One ; 18(7): e0288344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37418449

RESUMEN

Athletes often experience short-term training cessation because of injury, illness, post-season vacation, or other reasons. Limited information is available about the effect of short-term (less than four weeks) training cessation on muscle strength in athletes. Sprinting athletes must maintain knee extension and flexion strength to reduce the risk of sprint-type hamstring strain injury. This study aimed to identify whether and to what extent knee extension and flexion torque in concentric and eccentric contractions is reduced by two weeks of training cessation in sprinters. Before and after the training cessation, maximal voluntary isokinetic knee extension and flexion torque in slow and fast concentric (60 and 300°/s) and slow eccentric (60°/s) contractions were assessed in 13 young male highly trained sprinters (average World Athletics points = 978). Knee flexion torque during the bilateral Nordic hamstring exercise (NHE) was also measured. After the training cessation, isokinetic concentric at 300°/s and eccentric torque were significantly reduced in both knee extension and flexion. There was no difference in the magnitude of reduction between isokinetic knee extension and flexion torques in all conditions. The relative changes were more notable in eccentric (-15.0%) than in concentric contraction at 60°/s (-0.7%) and 300°/s (-5.9%). Knee flexion torque during the NHE also declined (-7.9% and -9.9% in the dominant and non-dominant legs, respectively). There was no significant correlation between the relative reductions in isokinetic knee flexion torque and knee flexion torque during the NHE. The findings suggest that sprinters and their coaches should focus on recovering fast concentric and slow eccentric knee extension and flexion strength after two weeks of training cessation.


Asunto(s)
Articulación de la Rodilla , Rodilla , Humanos , Masculino , Rodilla/fisiología , Fuerza Muscular/fisiología , Ejercicio Físico/fisiología , Pierna , Torque , Músculo Esquelético/fisiología , Contracción Muscular/fisiología
6.
Eur J Sport Sci ; 23(6): 955-963, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35593181

RESUMEN

This study aimed to examine how genetic polymorphisms related to muscular strength and flexibility influence artistic gymnastic performance in an attempt to identify a novel polymorphism associated with flexibility. In study 1, the passive straight-leg-raise (PSLR) score and aromatase gene CYP19A1 rs936306 polymorphism, a key enzyme for estrogen biosynthesis, were assessed in 278 individuals. In study 2, athletes (281 gymnasts and 1908 other athletes) were asked about their competition level, and gymnasts were assessed using the difficulty score (D-score) for each event. Muscular strength- (ACTN3 R577X rs1815739 and ACE I/D rs4341) and flexibility-related (ESR1 rs2234693 T/C and CYP19A1 rs936306 C/T) genetic polymorphisms were analyzed. In study 1, males with the CYP19A1 CT + TT genotype showed significantly higher PSLR scores than those with the CC genotype. In study 2, male gymnasts with the R allele of ACTN3 R577X showed a correlation with the floor, rings, vault, and total D-scores. In addition, male gymnasts with the C allele of ESR1 T/C and T allele of CYP19A1 C/T polymorphisms were correlated with the pommel horse, parallel bars, horizontal bar, and total D-scores. Furthermore, genotype scores of these three polymorphisms correlated with the total D-scores and competition levels in male gymnasts. In contrast, no such associations were observed in female gymnasts. Our findings suggest that muscular strength- and flexibility-related polymorphisms play important roles in achieving high performance in male artistic gymnastics by specifically influencing the performance of events that require muscular strength and flexibility, respectively.HighlightsEstrogen-related CYP19A1 polymorphism is a novel determinant of flexibility in males.Muscular strength- and flexibility-related polymorphisms play important roles in high performance in male artistic gymnastics.Genotypes of ACTN3 R577X, ESR1 rs2234693, and CYP19A1 rs936306 may contribute to training plan optimization and event selection in artistic gymnastics.


Asunto(s)
Pueblos del Este de Asia , Gimnasia , Fuerza Muscular , Rango del Movimiento Articular , Femenino , Humanos , Masculino , Actinina/genética , Rendimiento Atlético/fisiología , Genotipo , Gimnasia/fisiología , Fuerza Muscular/genética , Polimorfismo Genético , Rango del Movimiento Articular/genética
7.
Front Hum Neurosci ; 16: 974406, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36337858

RESUMEN

To further develop three-dimensional (3D) applications, it is important to elucidate the negative effects of 3D applications on the human body and mind. Thus, this study investigated differences in the effects of visual fatigue on cognition and brain activity using visual and auditory tasks induced by watching a 1-h movie in two dimensions (2D) and 3D. Eighteen young men participated in this study. Two conditions were randomly performed for each participant on different days, namely, watching the 1-h movie on television in 2D (control condition) and 3D (3D condition). Before and after watching the 1-h movie on television, critical flicker fusion frequency (CFF: an index of visual fatigue), and response accuracy and reaction time for the cognitive tasks were determined. Brain activity during the cognitive tasks was evaluated using a multi-channel near-infrared spectroscopy system. In contrast to the control condition, the decreased CFF, and the lengthened reaction time and the decreased activity around the right primary somatosensory cortex during Go/NoGo blocks in the visual task at post-viewing in the 3D condition were significant, with significant repeated measures correlations among them. Meanwhile, in the auditory task, the changes in cognitive performance and brain activity during the Go/NoGo blocks were not significant in the 3D condition. These results suggest that the failure or delay in the transmission of visual information to the primary somatosensory cortex due to visual fatigue induced by watching a 3D movie reduced the brain activity around the primary somatosensory cortex, resulting in poor cognitive performance for the visual task. This suggests that performing tasks that require visual information, such as running in the dark or driving a car, immediately after using a 3D application, may create unexpected risks in our lives. Thus, the findings of this study will help outlining precautions for the use of 3D applications.

8.
Commun Biol ; 5(1): 1290, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434094

RESUMEN

Bacteria and Eucarya utilize the non-oxidative pentose phosphate pathway to direct the ribose moieties of nucleosides to central carbon metabolism. Many archaea do not possess this pathway, and instead, Thermococcales utilize a pentose bisphosphate pathway involving ribose-1,5-bisphosphate (R15P) isomerase and ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco). Intriguingly, multiple genomes from halophilic archaea seem only to harbor R15P isomerase, and do not harbor Rubisco. In this study, we identify a previously unrecognized nucleoside degradation pathway in halophilic archaea, composed of guanosine phosphorylase, ATP-dependent ribose-1-phosphate kinase, R15P isomerase, RuBP phosphatase, ribulose-1-phosphate aldolase, and glycolaldehyde reductase. The pathway converts the ribose moiety of guanosine to dihydroxyacetone phosphate and ethylene glycol. Although the metabolic route from guanosine to RuBP via R15P is similar to that of the pentose bisphosphate pathway in Thermococcales, the downstream route does not utilize Rubisco and is unique to halophilic archaea.


Asunto(s)
Ribosa , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Ribosa/metabolismo , Pentosas/metabolismo , Archaea/genética , Archaea/metabolismo , Guanosina/metabolismo , Fosfatos
9.
Front Physiol ; 13: 965827, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035485

RESUMEN

Maintenance and improvement of neuromuscular functions is crucial for everyone regardless of age. An easy way to assess neuromuscular properties without muscle contraction is useful especially for those who cannot perform strenuous muscular force production, such as older adults and patients with orthopedic or cognitive disorders. Bioelectrical impedance analysis (BIA) can assess body electrical properties e.g., phase angle (PhA) which is regarded as muscle quantity/quality index. The purpose of this study was to investigate associations of PhA with neuromuscular properties of the knee extensors in 55 young (n = 23) and older (n = 32) adults. The values of PhA of the right thigh and whole-body were determined with BIA at 50 kHz. The participants performed 4-s maximal voluntary isometric contraction (MVIC) to measure peak torque (PTMVIC), and 1-s brief MVIC to assess rate of torque development (RTD) over the time interval of 0-200 ms. As markers of physiological mechanisms of muscle force production, twitch contractile properties (peak twitch torque, rate of twitch torque development, and time-to-peak twitch torque) of the knee extensors obtained by femoral nerve electrical stimulation, and muscle activity assessed as root mean square values of electromyographic activity (EMG-RMS) during PTMVIC and RTD measurements were measured. Thigh and whole-body PhA significantly correlated with PTMVIC (r ≥ 0.555, p < 0.001) and electrically evoked twitch parameters (peak twitch torque, rate of twitch torque development, and time-to-peak twitch torque; |r| ≥ 0.420, p ≤ 0.001), but not RTD (r ≤ 0.237, p ≥ 0.081) or EMG-RMSs (|r| ≤ 0.214, p ≥ 0.117). Stepwise multiple linear regression analysis revealed that thigh PhA was selected as a significant variable to predict PTMVIC but not RTD. Whole-body PhA was not selected as a significant variable to predict PTMVIC or RTD. In conclusion, both thigh and whole-body PhA can associate with maximal voluntary muscle strength of the knee extensors, and this association may be due to intrinsic contractile properties but not neural aspects. Regarding prediction of the knee extensor strength, thigh PhA is preferable as the predictor rather than whole-body PhA which is used as a widely acknowledged indicator of sarcopenia.

10.
Med Eng Phys ; 106: 103832, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35926956

RESUMEN

The cell membrane capacitance (Cm) and characteristic frequencies (fc) of tissues can be obtained using segmental bioelectrical impedance spectroscopy (S-BIS). Higher Cm and lower fc are associated with a larger surface area of skeletal muscle fibers with T-tubules in the tissues. Muscle fiber membrane is one of the major physiological factors that influence surface electromyograms (EMGs) as well as the number of recruited motor units so that the amplitude of surface EMG may be correlated with Cm and fc. The aim of the current study was to examine the association of fc or Cm in the lower leg with contractile and neuromuscular properties in the plantar flexors. We analyzed data from 59 participants (29 women) aged 21-83 years. The Cm, fc, and intracellular water (ICW) in the lower leg were obtained using S-BIS. We measured electrical-evoked torque, maximal voluntary contraction (MVC) torque, and amplitude of EMG normalized by the M wave during MVC contraction. The high Cm group had a significantly lower fc and significantly higher MVC torque, estimated maximum torque, twitch torque, and root mean square (RMS) of EMG normalized by the M wave (EMG:M) in the musculus triceps surae compared to the low Cm group (P < 0.05). Cm was positively and fc was negatively correlated with the nRMS of EMG:M in the triceps surae (P < 0.05). S-BIS recordings can be used to detect changes in skeletal muscle membrane capacitance, which may provide insights into the number of T-tubules. The muscle capacitance measured with S-BIS can be predictive of muscle force generation.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Estimulación Eléctrica/métodos , Electromiografía , Femenino , Humanos , Contracción Isométrica/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Torque
11.
Eur J Appl Physiol ; 122(10): 2271-2281, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35849183

RESUMEN

PURPOSE: The purpose of this study was to investigate associations of muscle quality indices with joint-level power-related measures in the knee extensors of thirty-two older males (65-88 years). METHODS: Muscle quality indices included: echo intensity, ratio of intracellular- to total water content (ICW/TW), and specific muscle strength. Echo intensity was acquired from the rectus femoris (EIRF) and vastus lateralis (EIVL) by ultrasonography. ICW/TW was computed from electrical resistance of the right thigh obtained by bioelectrical impedance spectroscopy. Specific muscle strength was determined as the normalized maximal voluntary isometric knee extension (MVIC) torque to estimated knee extensor volume. Isotonic maximal effort knee extensions with a load set to 20% MVIC torque were performed to obtain the knee extension power-related measures (peak power, rate of power development [RPD], and rate of velocity development [RVD]). Power and RPD were normalized to MVIC. RESULTS: There were no significant correlations between muscle quality indices except between EIRF and EIVL (|r|≤ 0.253, P ≥ 0.162). EIRF was negatively correlated with normalized RPD and RVD (r ≤ - 0.361, P ≤ 0.050). ICW/TW was positively correlated with normalized peak power (r = 0.421, P = 0.020). Specific muscle strength was positively correlated with absolute peak power and RPD (r ≥ 0.452, P ≤ 0.012). CONCLUSION: Knee extension power-related measures were lower in participants with higher EI, lower ICW/TW, and lower specific muscle strength, but the muscle quality indices may be determined by independent physiological characteristics.


Asunto(s)
Rodilla , Fuerza Muscular , Anciano , Humanos , Contracción Isométrica/fisiología , Rodilla/fisiología , Articulación de la Rodilla , Masculino , Fuerza Muscular/fisiología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Músculo Cuádriceps/diagnóstico por imagen , Músculo Cuádriceps/fisiología , Torque , Agua
12.
Int J Sports Med ; 43(10): 859-864, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35640598

RESUMEN

This study investigated the effect of 1-week oral administration of propolis on muscle fatigue and recovery after performing a fatigue task (total 100 maximal voluntary concentric knee extension repetitions). In this placebo-controlled, double-blind study, 18 young men consumed a formulation with high Brazilian green propolis dose (H-BGP), a formulation with low Brazilian green propolis dose, or a placebo, for 1 week before performing the fatigue task (an interval between each intervention: 1-2 weeks). Maximal voluntary contraction torque, central fatigue (voluntary activation and root mean square values of the surface electromyography amplitude), and peripheral fatigue (potentiated triplet torque) were assessed before, immediately after, and 2 minutes after the fatigue task. Maximal voluntary contraction torque decreased immediately after the fatigue task in all conditions (P<0.001); however, it recovered from immediately after to 2 minutes after the fatigue task only in the H-BGP condition (P<0.001). Furthermore, there was a significant decrease in voluntary activation (P<0.001) and root mean square values of the surface electromyography amplitude (P≤0.035) only in the placebo condition. No significant difference was observed in the time-course change in potentiated triplet torque between the conditions. These results suggest that oral administration of propolis promotes muscle fatigue recovery by reducing central fatigue.


Asunto(s)
Fatiga Muscular , Própolis , Administración Oral , Método Doble Ciego , Electromiografía , Humanos , Contracción Isométrica/fisiología , Masculino , Contracción Muscular/fisiología , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Torque
13.
J Aging Phys Act ; 30(6): 1003-1013, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35453123

RESUMEN

This study investigated associations of fatigue resistance determined by an exercise-induced decrease in neuromuscular power with prefatigue neuromuscular strength and power of the knee extensors in 31 older men (65-88 years). A fatigue task consisted of 50 consecutive maximal effort isotonic knee extensions (resistance: 20% of prefatigue isometric maximal voluntary contraction torque) over a 70° range of motion. The average of the peak power values calculated from the 46th to 50th contractions during the fatigue task was normalized to the prefatigue peak power value, which was defined as neuromuscular fatigue resistance. Neuromuscular fatigue resistance was negatively associated with prefatigue maximal power output (r = -.530) but not with prefatigue maximal voluntary contraction torque (r = -.252). This result highlights a trade-off between prefatigue maximal power output and neuromuscular fatigue resistance, implying that an improvement in maximal power output might have a negative impact on neuromuscular fatigue resistance.


Asunto(s)
Fatiga Muscular , Músculo Esquelético , Masculino , Humanos , Anciano , Electromiografía , Rodilla , Contracción Isométrica , Torque
14.
J Physiol Anthropol ; 41(1): 10, 2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35346376

RESUMEN

BACKGROUND: We aimed to investigate the association of age-related differences in the intracellular-to-total water ratio with explosive strength of the plantar flexors. METHODS: A total of 60 young (21-33 years) and older (64-83 years) individuals were recruited. Intracellular- (ICW) and total-water (TW) content within the right leg was evaluated by bioelectrical impedance spectroscopy as indicators of muscle cell mass and whole muscle mass within the segment, respectively. ICW divided by TW (ICW/TW) was calculated as an index of the occupancy of muscle cells within whole muscle. Rate of torque development (RTD) and electromyography (EMG) activity during maximal voluntary isometric plantar flexion were measured as indicators of explosive muscle strength and neuromuscular activity, respectively. RTD was calculated from three time windows of 0-50, 50-100, and 100-200 ms. Time-to-peak torque (TPT) was assessed from evoked twitch contraction. RESULTS: Compared with young participants, older participants showed lower ICW/TW (-7%, P < 0.001), RTD (-25 to -40%, P = 0.003 to 0.001), and longer TPT (+11%, P < 0.001). ICW/TW associated positively with RTD (r = 0.377 to 0.408, P = 0.004 to 0.001) and negatively with TPT (r = -0.392, P = 0.002), but not with EMG activity. RTD was associated positively with EMG for each time window (r = 0.527 to 0.607, P < 0.001). CONCLUSIONS: These results indicate that ICW/TW may be a useful predictor of the age-related decrease in RTD, and that the decrease in ICW/TW with age may reflect age-associated changes in intrinsic contractile properties.


Asunto(s)
Sustancias Explosivas , Agua , Estudios Transversales , Humanos , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología
15.
Front Physiol ; 13: 972755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726380

RESUMEN

This study aimed to investigate whether triceps surae muscle stiffness is associated with passive ankle joint stiffness in 40 young (21-24 years) and older (62-83 years) males. Using ultrasound shear wave elastography, the shear modulus of each muscle of the triceps surae (the medial [MG], lateral gastrocnemius [LG], and soleus [Sol]) was assessed as muscle stiffness at the ankle neutral position (NP) and 15-degree dorsiflexed position (DF15) with the knee fully extended. Passive ankle joint stiffness at the NP and DF15 was calculated as the gradient of the angle-torque relationship at each joint angle during passive ankle dorsiflexion at 1°âˆ™s-1 controlled by using an isokinetic dynamometer. Passive ankle joint stiffness was normalized by the body mass. There was no correlation between the absolute ankle joint stiffness and muscle shear modulus of triceps surae in the young and older groups at the NP (r ≤ 0.349, p ≥ 0.138). Significant positive correlations between absolute ankle joint stiffness and muscle shear modulus at DF15 were observed for MG and Sol in the young group (r ≥ 0.451, p ≤ 0.044) but not in the older group. The normalized ankle joint stiffness at the NP was significantly positively correlated with the LG shear modulus in young participants and with the MG and LG shear modulus in older participants (r ≥ 0.466 and p ≤ 0.039). There were significant positive correlations between the normalized ankle joint stiffness and the muscle shear modulus of the triceps surae at DF15 in young and older participants (r ≥ 0.464 and p ≤ 0.040), except for the MG shear modulus in older participants (r = 0.419 and p = 0.066). These results suggest that the material properties of the entire triceps surae, even Sol, which is the most compliant muscle among the triceps surae, affect passive ankle joint stiffness, especially when the triceps surae is lengthened and body size is considered.

16.
Front Physiol ; 12: 775157, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867482

RESUMEN

The present study examined if the magnitude of changes in indirect muscle damage markers could be predicted by maximal voluntary isometric contraction (MVIC) torque changes from immediately to 1 day after eccentric exercise. Twenty-eight young men performed 100 maximal isokinetic (60°/s) eccentric contractions of the knee extensors. MVIC torque, potentiated doublet torque, voluntary activation (VA) during MVIC, shear modulus of rectus femoris (RF), vastus medialis and lateralis, and muscle soreness of these muscles were measured before, immediately after, and 1-3 days post-exercise. Based on the recovery rate of the MVIC torque from immediately to 1-day post-exercise, the participants were placed to a recovery group that showed an increase in the MVIC torque (11.3-79.9%, n = 15) or a no-recovery group that showed no recovery (-71.9 to 0%, n = 13). No significant difference in MVIC torque decrease immediately post-exercise was found between the recovery (-33 ± 12%) and no-recovery (-32 ± 9%) groups. At 1-3 days, changes in MVIC torque (-40 to -26% vs. -22 to -12%), potentiated doublet torque (-37 to -22% vs. -20 to -9%), and proximal RF shear modulus (29-34% vs. 8-15%) were greater (p < 0.05) for the no-recovery than recovery group. No significant group differences were found for muscle soreness. The recovery rate of MVIC torque was correlated (p < 0.05) with the change in MVIC torque from baseline to 2 (r = 0.624) or 3 days post-exercise (r = 0.526), or peak change in potentiated doublet torque at 1-3 days post-exercise from baseline (r = 0.691), but not correlated with the changes in other dependent variables. These results suggest that the recovery rate of MVIC torque predicts changes in neuromuscular function but not muscle soreness and stiffness following eccentric exercise of the knee extensors.

17.
Scand J Med Sci Sports ; 31(8): 1666-1673, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33864301

RESUMEN

Limited information is available on site-specific features of muscle stiffness and aponeurosis strain of the biceps femoris long head (BFlh) during contractions. Therefore, understanding of the mechanics and etiology of hamstring strain injuries remains difficult. As a first step to gain further insight into them, the present study aimed to identify whether active muscle stiffness and proximal aponeurosis strain during contractions are varied along the long axis of the BFlh. The BFlh muscle shear wave speed (proxy for stiffness) was measured in the proximal, central, and distal sites during 20%, 50%, and 80% of maximal voluntary isometric contraction (MVC) of knee flexion exerted with the hip and knee joints flexed at 40° and 30°, respectively, using ultrasound shear wave elastography. Further, a segmental strain of the BFlh proximal aponeurosis was assessed in the proximal, central, and distal sites during isometric knee flexion, using B-mode ultrasonography. The shear wave speed was significantly higher in the distal site than the proximal and central sites at 20% MVC (p ≤ .002, with a large effect size), whereas no significant difference was found between the three sites at 50% and 80% MVC. The BFlh proximal aponeurosis strain showed no significant difference between the proximal, central, and distal sites at any contraction intensity. These findings indicate that site-specific differences in muscle stiffness and proximal aponeurosis strain are substantially small and that muscle stiffness and proximal aponeurosis strain of the BFlh at moderate-to-high contraction intensity is not exceptional in the site where a sprinting-type hamstring strain typically occurs.


Asunto(s)
Aponeurosis/fisiología , Músculos Isquiosurales/fisiología , Esguinces y Distensiones/fisiopatología , Aponeurosis/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad , Músculos Isquiosurales/diagnóstico por imagen , Humanos , Contracción Isométrica/fisiología , Masculino , Esguinces y Distensiones/diagnóstico por imagen
18.
J Electromyogr Kinesiol ; 58: 102549, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33915270

RESUMEN

Although the influence of the series elastic element of the muscle-tendon unit on jump performance has been investigated, the corresponding effect of the parallel elastic element remains unclear. This study examined the relationship between the resting calf muscle stiffness and drop jump performance. Twenty-four healthy men participated in this study. The shear moduli of the medial gastrocnemius and the soleus were measured at rest as an index of muscle stiffness using ultrasound shear wave elastography. The participants performed drop jumps from a 15 cm high box. The Spearman rank correlation coefficient was used to examine the relationships between shear moduli of the muscles and drop jump performance. The medial gastrocnemius shear modulus showed a significant correlation with the drop jump index (jump height/contact time) (r = 0.414, P = 0.044) and jump height (r = 0.411, P = 0.046), but not with contact time (P > 0.05). The soleus shear modulus did not correlate with these jump parameters (P > 0.05). These results suggest that the resting medial gastrocnemius stiffness can be considered as one of the factors that influence drop jump performance. Therefore, increase in resting muscle stiffness should enhance explosive athletic performance in training regimens.


Asunto(s)
Rendimiento Atlético , Pierna/fisiología , Músculo Esquelético/fisiología , Adulto , Módulo de Elasticidad , Diagnóstico por Imagen de Elasticidad , Humanos , Masculino , Movimiento , Músculo Esquelético/diagnóstico por imagen , Tendones/fisiología
19.
PLoS One ; 16(3): e0248125, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33667276

RESUMEN

Joint flexibility is theoretically considered to associate with muscle-tendon unit (MTU) architecture. However, this potential association has not been experimentally demonstrated in humans in vivo. We aimed to identify whether and how MTU architectural parameters are associated with joint range of motion (RoM), with a special emphasis on slack angle. The fascicle length, pennation angle, tendinous tissue length, MTU length, and shear modulus of the medial gastrocnemius (MG) were assessed during passive ankle dorsiflexion using ultrasound shear wave elastography in 17 healthy males. During passive dorsiflexion task, the ankle joint was rotated from 40° plantar flexion to the maximal dorsiflexion joint angle at which each subject started experiencing pain. From the ankle joint angle-shear modulus relationship, the angle at which shear modulus began to rise (slack angle) was calculated. Two dorsiflexion RoMs were determined as follows; 1) range from the anatomical position to maximal angle (RoManat-max) and 2) range from the MG slack angle to maximal angle (RoMslack-max). The MTU architectural parameters were analyzed at the anatomical position and MG slack angle. The resolved fascicle length (fascicle length × cosine of pennation angle) and ratios of resolved fascicle or tendinous tissue length to MTU length measured at the MG slack angle significantly correlated with the RoMslack-max (r = 0.491, 0.506, and -0.506, respectively). Any MTU architectural parameters assessed at the anatomical position did not correlate with RoManat-max or RoMslack-max. These results indicate that MTUs with long fascicle and short tendinous tissue are advantageous for joint flexibility. However, this association cannot be found unless MTU architecture and joint RoM are assessed with consideration of muscle slack.


Asunto(s)
Articulación del Tobillo , Diagnóstico por Imagen de Elasticidad , Músculo Esquelético , Tendones , Adulto , Articulación del Tobillo/diagnóstico por imagen , Articulación del Tobillo/fisiología , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Rango del Movimiento Articular , Tendones/diagnóstico por imagen , Tendones/fisiología
20.
Med Sci Sports Exerc ; 53(9): 1855-1864, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33731655

RESUMEN

PURPOSE: We aimed to investigate the hypothesis that type I collagen plays a role in increasing bone mineral density (BMD) and muscle stiffness, leading to low and high risks of fatigue fracture and muscle injury, respectively, in athletes. As a potential mechanism, we focused on the effect of the type I collagen alpha 1 chain gene (COL1A1) variant associated with transcriptional activity on bone and skeletal muscle properties. METHODS: The association between COL1A1 rs1107946 and fatigue fracture/muscle injury was evaluated in Japanese athletes. Effects of the polymorphism on tissue properties (BMD and muscle stiffness) and type I collagen α1/α2 chain ratios in muscles were examined in Japanese nonathletes. RESULTS: The C-allele carrier frequency was greater in female athletes with fatigue fracture than in those without (odds ratio = 2.44, 95% confidence interval [CI] = 1.17-5.77) and lower in female athletes with muscle injury than in those without (odds ratio = 0.46, 95% CI = 0.24-0.91). Prospective validation analysis confirmed that in female athletes, muscle injury was less frequent in C-allele carriers than in AA genotype carriers (multivariable-adjusted hazard ratio = 0.27, 95% CI = 0.08-0.96). Among female nonathletes, the C-allele of rs1107946 was associated with lower BMD and lower muscle stiffness. Muscle biopsy revealed that C-allele carriers tended to have a larger type I collagen α1/α2 chain ratio than AA genotype carriers (2.24 vs 2.05, P = 0.056), suggesting a higher proportion of type I collagen α1 homotrimers. CONCLUSION: The COL1A1 rs1107946 polymorphism exerts antagonistic effects on fatigue fracture and muscle injury among female athletes by altering the properties of these tissues, potentially owing to increased levels of type I collagen α1 chain homotrimers.


Asunto(s)
Colágeno Tipo I/genética , Fracturas por Estrés/genética , Predisposición Genética a la Enfermedad , Músculo Esquelético/lesiones , Adulto , Femenino , Humanos , Japón , Masculino , Polimorfismo Genético , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA